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Abstract 
 

A novel theory of stages in cognitive development is 
presented, loosely corresponding to Piagetan theory but 
specifically oriented toward AI systems centered on 
uncertain inference components.  Four stages are 
articulated (infantile, concrete, formal and reflexive), 
and are characterized both in terms of external cognitive 
achievements (a la Piaget) and in terms of internal 
inference control dynamics.  The theory is illustrated via 
the analysis of specific problem solving tasks 
corresponding to the different stages.  The Novamente 
AI Engine, with its Probabilistic Logic Networks 
uncertain inference component and its embodiment in 
the AGI-SIM simulation world, is used as an example 
throughout. 
 

I. INTRODUCTION 

Contemporary cognitive science contains essentially 
no theory of “AI developmental psychology” – a lack which 
is frustrating from the perspective of AI scientists concerned 
with understanding, designing and controlling the cognitive 
development of generally intelligent AI systems.  There is of 
course an extensive science of human developmental 
psychology, and so it is a natural research program to take 
the chief ideas from the former and inasmuch as possible 
port them to the AI domain.  However this is not an entirely 
simple matter both because of the differences between 
humans and AI’s and because of the unsettled nature of 
contemporary developmental psychology theory. The 
present paper describes some work that we have done in this 
direction, as part of a longer-term project to develop a 
systematic theory of AI cognitive development.  

The ghost of Jean Piaget hangs over modern 
developmental psychology in a yet unresolved way.  
Piaget’s theories provide a cogent overarching perspective 
on human cognitive development, coordinating broad 
theoretical ideas and diverse experimental results into a 
unified whole.  Modern experimental work has shown 
Piaget’s ideas to be often oversimplified and incorrect.  

However, what has replaced the Piagetan understanding is 
not an alternative unified and coherent theory, but a variety 
of microtheories addressing particular aspects of cognitive 
development.  For this reason a number of contemporary 
theorists taking a computer science [1] or dynamical systems 
[2-4] approach to developmental psychology have chosen to 
adopt the Piagetan framework in spite of its demonstrated 
shortcomings, both because of its conceptual strengths and 
for lack of a coherent, more rigorously grounded alternative. 

 
 

The work described here involves the construction of a 
theory of cognitive development inspired conceptually by 
Piaget’s work, but specifically applicable to AI systems that 
rely on uncertain logical inference as a primary or highly 
significant component.  Piaget describes a series of stages of 
cognitive development, each corresponding to a certain level 
of sophistication in terms of the types of reasoning a child 
can carry out.  We describe a related series of stages, each 
corresponding not only to a level of sophistication in terms 
of demonstrated problem-solving ability, but also to a level 
of internal sophistication in terms of inference control 
mechanisms within AI software implementations.  

This work was inspired by our ongoing research 
involving the Novamente AI Engine [5-7], a complex 
integrative software system aimed at achieving advanced 
Artificial General Intelligence (AGI) [8].  The Novamente 
system has been integrated with AGI-SIM, a 3D simulation 
world powered by the CrystalSpace game engine used in the 
Crystal Cassie embodiment of the SNePs AGI system [9].   
The table below shows each of our proposed developmental 
stages, with examples drawn from our ongoing research 
with the Novamente system: 

 
Stage Example 

Infantile Object Permanence 
Concrete  Conservation of Number, 

Theory of Mind 
Formal Systematic Experimentation 
Reflexive Correction of Inference Bias 

 

II. PIAGET’S APPROACH TO COGNITIVE DEVELOPMENT 
 

Jean Piaget, in his classic studies of human developmental 
psychology [10-15], conceived of child development in four 
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stages, each roughly identified with an age group: infantile, 
preoperational, concrete operational, and formal. 

   --Infantile:  In this stage a mind develops basic world-
exploration driven by instinctive actions.  Reward-driven 
reinforcement of actions learned by imitation, simple 
associations between words and objects, actions and images, 
and the basic notions of time, space, and causality are 
developed. The most simple, practical ideas and strategies 
for action are learned. 

   --Preoperational: At this stage we see the formation of 
mental representations, mostly poorly organized and un-
abstracted, building mainly on intuitive rather than logical 
thinking.  Word-object and image-object associations 
become systematic rather than occasional.  Simple syntax is 
mastered, including an understanding of subject-argument 
relationships.  One of the crucial learning achievements here 
is “object permanence”--infants learn that objects persist 
even when not observed.  However, a number of cognitive 
failings persist with respect to reasoning about logical 
operations, and abstracting the effects of intuitive actions to 
an abstract theory of operations. 

   --Concrete: More abstract logical thought is applied to 
the physical world at this stage. Among the feats achieved 
here are: reversibility--the ability to undo steps already 
done; conservation--understanding that properties can 
persist in spite of appearances; theory of mind--an 
understanding of the distinction between what I know and 
what others know.  (If I cover my eyes, can you still see 
me?)  Complex concrete operations, such as putting items in 
height order, are easily achievable. Classification becomes 
more sophisticated, yet the mind still cannot master purely 
logical operations based on abstract logical representations 
of the observational world. 

   --Formal: Abstract deductive reasoning, the process of 
forming, then testing hypotheses, and systematically 
reevaluating and refining solutions, develops at this stage, as 
does the ability to reason about purely abstract concepts 
without reference to concrete physical objects. This is adult 
human-level intelligence.  Note that the capability for formal 
operations is intrinsic in the PTL component of Novamente, 
but in-principle capability is not the same as pragmatic, 
grounded, controllable capability.   
 Despite the influence and power of Piaget’s theory, it has 
received much valid criticism.  Very early on, Vygotsky [16, 
17] disagreed with Piaget’s explanation of his stages as 
inherent and developed by the child’s own activities, and 
Piaget’s prescription of good parenting as not interfering 
with a child’s unfettered exploration of the world.  Much of 
the analysis of Piaget’s stages as being asocially grounded 
start with Vygotsky’s assertion that children function in a 
world surrounded by adults who provide a cultural context, 
offering ongoing assistance, critique, and ultimately 
validation of the child’s developmental activities.   
 Vygotsky also was an early critic with respect to the idea 
that cognitive development is continuous, and continues 
beyond Piaget’s formal stage.  Gagne [18] also believes in 
continuity, and that learning of prerequisite skills made the 
learning of subsequent skills easier and faster without regard 

to Piagetan stage formalisms.  Subsequent researchers have 
argued that Piaget has merely constructed ad hoc 
descriptions of the sequential development of behaviour [19-
22].  We agree that learning is a continuous process, and our 
notion of stages is more statistically constructed than rigidly 
quantized. 
 Critique of  Piaget’s notion of transitional “half stages” is 
also relevant to a more comprehensive hierarchical view of 
development.  Some have proposed that Piaget’s half stages 
are actually stages [23].  As Commons and Pekker [22] point 
out:  “the definition of a stage that was being used by Piaget 
was based on analyzing behaviors and attempting to impose 
different structures on them.  There is no underlying logical 
or mathematical definition to help in this process…”  Their 
Hierarchical Complexity development model uses task 
achievement rather than ad hoc stage definition as the basis 
for constructing relationships between phases of 
developmental ability--an approach which  we find useful, 
though our approach is different in that we define stages in 
terms of specific underlying cognitive mechanisms.  
 Another critique of Piaget is that one individual’s 
performance is often at different ability stages depending on 
the specific task (for example [24]).  Piaget responded to 
early critiques along these lines by calling the phenomenon 
“horizontal décalage,” but neither he nor his successors 
[25,26] have modified his theory to explain (rather than 
merely describe) it.  Similarly to Thelen and Smith [2], we 
observe that the abilities encapsulated in the definition of a 
certain stage emerge gradually during the previous stage--so 
that the onset of a given stage represents the mastery of a 
cognitive skill that was previously present only in certain 
contexts. 

Piaget also had difficulty accepting the idea of a 
preheuristic stage, early in the infantile period, in which 
simple trial-and-error learning occurs without significant 
heuristic guidance [27], a stage which we suspect exists and 
allows formulation of heuristics by aggregation of learning 
from preheuristic pattern mining.  Coupled with his belief 
that a mind’s innate abilities at birth are extremely limited, 
there is a troublingly unexplained transition from inability to 
ability in his model.   

Finally, another limiting aspect of Piaget’s model is that it 
did not recognize any stages beyond formal operations, and 
included no provisions for exploring this possibility.  A 
number of researchers [25,28-31] have described one or 
more postformal stages.  Commons and colleagues have also 
proposed a task-based model which provides a framework 
for explaining stage discrepancies across tasks and for 
generating new stages based on classification of observed 
logical behaviors.  [32] promotes a statistical conception of 
stage, which provides a good bridge between task-based and 
stage-based models of development, as statistical modeling 
allows for stages to be roughly defined and analyzed based 
on collections of task behaviors. 

[29] postulates the existence of a postformal stage by 
observing elevated levels of abstraction which, they argue, 
are not manifested in formal thought. [33] observes a 
postformal stage when subjects become capable of analyzing 



 
 

 

and coordinating complex logical systems with each other, 
creating metatheoretical supersystems.  In our model, with 
the reflexive stage of development, we expand this 
definition of metasystemic thinking to include the ability to 
consciously refine one’s own mental states and formalisms 
of thinking.  Such self-reflexive refinement is necessary for 
learning which would allow a mind to analytically devise 
entirely new structures and methodologies for both formal 
and postformal thinking.    

III. THE UNCERTAIN INFERENCE PARADIGM  
 
Piaget’s developmental stages are very general, referring 

to overall types of learning, not  specific mechanisms or 
methods.  This focus was natural since the context of his 
work was human developmental psychology, and 
neuroscience has not yet progressed to the point of 
understanding the neural mechanisms underlying any sort of 
inference.  But if one is studying developmental psychology 
in an AI context where one knows something about the 
internal mechanisms of the AI system under consideration, 
then one can work with a more specific model of learning.   
Our focus here is on AI systems whose operations contain 
uncertain inference as a central component.  

An uncertain inference system, as we consider it here, 
consists of four components: 

-- a content representation scheme 
-- an uncertainty representation scheme 
-- a set of inference rules 
-- a set of inference control schemata 
Examples of content representation schemes are predicate 

logic and term logic [34].  Examples of uncertainty 
representation schemes are fuzzy logic [35], imprecise 
probability theory [36,37], Dempster-Shafer theory [37,38], 
Bayesian probability theory [39], NARS [40], and the 
Probabilistic Logic Networks (PLN) representation used in 
Novamente [41]. 

Many, but not all, approaches to uncertain inference 
involve only a limited, weak set of inference rules (e.g. not 
dealing with complex quantified expressions)  Both NARS 
and PLN contain uncertain inference rules that apply to 
logical constructs of arbitrary complexity.   

The subtlest part of uncertain inference is inference 
control: the choice of which inferences to do, in what order.  
Inference control is the primary area in which human 
inference currently exceeds automated inference.  Humans 
are not very efficient or accurate at carrying out inference 
rules, with or without uncertainty, but we are very good at 
determining which inferences to do and in what order, in 
any given context.  The lack of effective, context-sensitive 
inference control heuristics is why the general ability of 
current automated theorem provers is considerably weaker 
than that of a mediocre university mathematics major [42]. 

IV. NOVAMENTE AND PROBABILISTIC LOGIC NETWORKS 
 

Novamente’s knowledge representation consists of 
weighted labeled, generalized hypergraphs.  Patterns  
embodying knowledge emerge from applying various 
learning and reasoning algorithms to these hypergraphs.   

A hypergraph is an abstract mathematical structure, which 
consists of objects called Vertices and objects called Edges, 
which connect the Vertices [43].  In Novamente we have 
adopted the terminology of using Node/Vertex to refer to the 
elements of the hypergraph that are concretely implemented 
in a Novamente system’s memory, and Link/Edge to refer to 
elements of hypergraphs that are used to model Novamente 
systems and represent patterns that emerge in the concretely 
implemented hypergraph.  We use the term Atom to refer to 
Nodes and Links inclusively.  A hypergraph differs from a 
graph in that it allows Edges to connect more than two 
Vertices. Novamente hypergraphs extend ordinary 
hypergraphs to contain additional features, such as Edges 
that point to Edges instead of Vertices, and Vertices that 
represent complete sub-hypergraphs.    

A “weighted, labeled hypergraph” is a hypergraph whose 
Atoms all have associated annotations called labels, and one 
or more numbers that are generically called weights.  The 
label associated with an Atom might be interpreted as telling 
you what type of entity it is (a metalogical knowledge 
annotation).  An example of a weight attached to an Atom is 
a number representing a probability, or a number 
representing how important the Atom is to the system. 

In the framework introduced in the previous section, 
Novamente’s content representation is a “labeled 
generalized hypergraph with weights representing the 
attention paid to hypergraph components via learning and 
reasoning algorithms” and the uncertainty representation 
consists of some additional weights attached to the Nodes 
and Links of the hypergraph, representing probability values 
and related quantities such as “weight of evidence.” 

Novamente’s knowledge representation includes various 
types of Nodes, including ConceptNodes and SchemaNodes. 
SchemaNodes embody cognitive, perceptual or motoric 
procedures, and are represented as mathematical objects 
using arithmetic, logical and combinatory operators to 
combine elementary data types and Novamente Nodes and 
Links.   It also includes a number of other node types 
including PredicateNodes (SchemaNodes that produce truth 
values as their outputs) and Nodes representing particular 
kinds of concrete information, such as NumberNodes, 
WordNodes, PolygonNodes, etc.  An extensive list is given 
in [6]. 

Novamente also contains a variety of Link types, 
including some that represent logical relationships, such as 
ExtentionalInheritanceLink (ExtInhLink: an edge which 
indicates that the source Atom is a special case of the 
target), ExtensionalSimilarityLink (ExtSimLink: which 
indicates that one Atom is similar to another), and 
ExecutionLink (a ternary edge, which joins {S,B,C} when S 
is a SchemaNode and the result from applying S to B is C).  
Thus, a Novamente knowledge network is a hypergraph 
whose Nodes represent ideas or procedures, and whose 
Links represent relationships of specialization, similarity or 



 
 

 

transformation among ideas and/or procedures.   
ExtInh and ExtSim Links come with probabilistic weights 

indicating the extent of the relationship they denote (e.g. the 
ExtSimLink joining the “cat” ConceptNode to the “dog” 
ConceptNode gets a higher probability weight than the one 
joining the “cat” ConceptNode to the “washing machine” 
ConceptNode).  The mathematics of transformations 
involving these probabilistic weights becomes quite 
involved--particularly when one introduces SchemaNodes 
corresponding to abstract mathematical operations. 
SchemaNodes enable Novamente hypergraphs to have the 
complete mathematical power of standard logical 
formalisms like predicate calculus, but with the added 
advantage of a natural representation of uncertainty in terms 
of probabilities, as well as a neurostructurally motivated 
model of complex knowledge as dynamical networks. 

Novamente contains a probabilistic reasoning engine 
called Probabilistic Logic Networks (PLN) which exists 
specifically to carry out reasoning on these relationships, 
and will be described in a forthcoming publication [8].  The 
mathematics of PLN contains many subtleties, and there are 
relations to prior approaches to uncertain inference 
including NARS [40] and Walley’s theory of interval 
probabilities [44].  The current implementation of PLN 
within the Novamente software has been tested on various 
examples of mathematical and commonsense inference. 
 A simple example of a PLN uncertain inference rule is the 
probabilistic deduction rule, which takes the form 
 
A  B 
B  C 
|- 
A  C 
 
(where e.g. A B is a shorthand for the ExtInhLink from A 
to B), whose uncertain truth value formula has as one 
component the formula 
 

sAC = sAB sBC  + (1-sAB) ( sC-- sB sBC ) / (1- sB ) 
 
(where e.g. sAC and sB refer to the probability values 
attached to A C and B respectively).  PLN attaches to each 
node and link a “weight of evidence” value in addition to a 
probability, but the deduction formula for weight of 
evidence is more complex and will not be given here. 
 Inference control in Novamente takes several forms: 
 

1. Standard forward-chaining and backward-chaining 
inference heuristics (see e.g.  [45]) 

2. A reinforcement learning mechanism that allows 
inference rules to be chosen based on experience. 
Probabilities are tabulated regarding which 
inference rules have been useful in the past in 
which contexts, and these are subsequently used to 
bias the choices of inference rules during forward 
or backward chaining inference 

3. Application of PLN inference to the probabilities 
used in the reinforcement learning mechanism--this 

enables generalization, abstraction and analogy to 
be used in guessing which inference rules may be 
most useful in a given context 

 
These different approaches to inference control enable 

increasingly complex inferences, and involve increasing 
amounts of processor-time utilization and overall cognitive 
complexity.  They may also be interpreted as corresponding 
to loosely Piagetan stages of cognitive development. 

V. DEFINING DEVELOPMENTAL STAGES IN TERMS OF 
INFERENCE CONTROL  

 
Inspired by Piaget’s general ideas, later critiques, and the 

structure of inference control in Novamente, we have 
created a novel theory of cognitive developmental stages, 
defined in terms of the control of uncertain inference 
trajectories.  The stages are defined as follows: 

    --Infantile: Able to recognize patterns in and conduct 
inferences about the world, but only using simplistic hard-
wired (not experientially learned) inference control schema, 
along with pre-heuristic pattern mining of experiential data. 

    --Concrete: Able to carry out more complex chains of 
reasoning regarding the world, via using inference control 
schemata that adapt behavior based on experience 
(reasoning about a given case in a manner similar to prior 
cases). 

    --Formal: Able to carry out arbitrarily complex 
inferences (constrained only by computational resources) via 
including inference control as an explicit subject of abstract 
learning. 

    --Reflexive: Capable of self-modification of internal 
structures.  (In the case of a Novamente, this process is very 
direct and thorough.) 

Here Piaget’s preoperational phase appears as transitional 
between the infantile and concrete operational phases.  We 
suspect this approach to cognitive modeling may have 
general value beyond Novamente, but we will address a 
more generalized developmental theory in future writings. 
We have designed specific Novamente / AGI-SIM learning 
tasks based on all the key Piagetan themes.  Currently our 
concrete work is near the beginning of this list, at Piaget’s 
infantile stage.   

The semantics of our stages is similar but not identical to 
Piaget’s.  Our stages are defined via internal cognitive 
mechanisms, and we then posit that these mechanisms 
correspond to the general ability to solve certain classes of 
problems in a generalizable way.  For instance, we suggest 
that it is only through inference control schemata which 
adapt based on experience that uncertain inference-based AI 
systems can learn to consistently solve Piagetan concrete-
operational tasks in a way that provides knowledge suitable 
for further generalization.  However, it may be that minds 
using hard-wired inference control schemata (typical of the 
infantile stage) can still solve some Piagetan concrete-
operational tasks, though most solutions to such tasks 
obtained in this way will be “brittle” and not easily 
generalizable to other tasks using infantile cognition.  



 
 

 

VI. INFANTILE COGNITION  
 
One example of a cognitive task at the borderline between 

infantile and concrete cognition is learning object 
permanence, a problem discussed in a Novamente/AGI-SIM 
context in [46].   Another example is the learning of word-
object associations: e.g. learning that when the word “ball” 
is uttered in various contexts (“Get me the ball,” “That’s a 
nice ball,” etc.) it generally refers to a certain type of object.  
 The key point regarding these “infantile” inference 
problems, from the Novamente perspective, is that assuming 
one provides the inference system with an appropriate set of 
perceptual and motor ConceptNodes and SchemaNodes, the 
chains of inference involved are short.  They involve about a 
dozen inferences, and this means that the search tree of 
possible PLN inference rules walked by the PLN backward-
chainer is relatively shallow.  Sophisticated inference 
control is not required: standard AI heuristics are sufficient.   

In short, textbook narrow-AI reasoning methods, utilized 
with appropriate uncertainty-savvy truth value formulas and 
coupled with appropriate representations of perceptual and 
motor inputs and outputs, correspond roughly to Piaget’s 
infantile stage of cognition.  The simplistic approach of 
these narrow-AI methods may be viewed as a method of 
creating building blocks for subsequent, more sophisticated 
heuristics. 

VII. CONSERVATION OF NUMBER 
 
Next, as an example of a learning problem classically 
categorized within Piaget’s concrete-operational phase, we 
consider a “conservation laws” problem, discussed in [1] in 
the context of software that solves the problem using (logic-
based and neural net) narrow-AI techniques.   
 

 
 

Fig. 1: Conservation of Number 
 
Conservation is the idea that a quantity remains the same 

despite changes in appearance.  If you show a child some 
objects (Fig. 1) and then spread them out, an infantile mind 
will focus on the spread, and believe that there are now more 
objects than before, whereas a concrete-operational mind 
will understand that the quantity of objects has not changed. 

Conservation of number seems very simple, but from a 
developmental perspective it is actually rather difficult.  
“Solutions” like those given in [1] that use neural networks 
or customized logical rule-bases to find specialized solutions 
that solve only this  problem fail to fully address the issue, 
because these solutions don’t create knowledge adequate to 
aid with the solution of related sorts of problems.   

We hypothesize that this problem is hard enough that for 
an inference-based AI system to solve it in a 
developmentally useful way, its inferences must be guided 
by meta-inferential lessons learned from prior similar 

problems. When approaching a number conservation 
problem, for example, a reasoning system might draw upon 
past experience with set-size problems (which may be trial-
and-error experience).  This is not a simple “machine 
learning” approach whose scope is restricted to the current 
problem, but rather a heuristically guided approach which 
(a) aggregates information from prior experience to guide 
solution formulation for the problem at hand, and (b) adds 
the present experience to the set of relevant information 
about quantification problems for future refinement of 
thinking.   

For instance, a very simple context-specific heuristic that 
a system might learn would be: “When evaluating the truth 
value of a statement related to the number of objects in a set, 
it is generally not that useful to explore branches of the 
backwards-chaining search tree that contain relationships 
regarding the sizes, masses, or other physical properties of 
the objects in the set.”  This heuristic itself may go a long 
way toward guiding an inference process toward a correct 
solution to the problem--but it is not something that a mind 
needs to know “a priori.” A concrete-operational stage mind 
may learn this by data-mining prior instances of inferences 
involving sizes of sets.  Without such experience-based 
heuristics, the search tree for such a problem will likely be 
unacceptably large.  Even if it is “solvable” without such 
heuristics, the solutions found may be overly fit to the 
particular problem and not usefully generalizable. 

VIII. THEORY OF MIND  
 
Another learning problem that is typically classed in the 
Piagetan concrete-operational stage is ”theory of mind” – 
which means, in in this context, fully understanding the fact 
that others have memories, perceptions and experiences. 
 Consider this experiment:  a preoperational child is shown 
her favorite “Dora the Explorer” DVD box.  Asked what 
show she’s about to see, she’ll answer “Dora.”  However, 
when her parent plays the disc, it’s “Spongebob 
Squarepants.”  If you then ask her what show her friend will 
expect when given the “Dora” DVD box, she will respond 
“Spongebob” although she just answered “Dora” for herself.  
A child lacking a theory of mind can not reason through 
what someone else would think given knowledge other than 
her own current knowledge.  Knowledge of self is 
intrinsically related to the ability to differentiate oneself 
from others, and this ability may not be fully developed at 
birth. 

Several theorists [47,48], based in part on experimental 
work with autistic children, perceive theory of mind as 
embodied in an innate module of the mind activated at a 
certain developmental stage (or not, if damaged).  While we 
consider this possible, we caution against adopting a 
simplistic view of the “innate vs. acquired” dichotomy: if 
there is innateness it may take the form of an innate 
predisposition to certain sorts of learning [49]. 

Davidson [50], Dennett [51] and others support the 
common belief that theory of mind is dependent upon 
linguistic ability.  A major challenge to this prevailing 



 
 

 

philosophical stance came from Premack and Woodruff [49] 
who postulated that prelinguistic primates do indeed exhibit 
“theory of mind” behavior.  While Premack and Woodruff’s 
experiment itself has been challenged [52], their general 
result has been bolstered by follow-up work showing similar 
results such as [53].  It seems to us that while theory of mind 
depends on many of the same inferential capabilities as 
language learning, it is not intrinsically dependent on the 
latter. 

There is a school of thought often called the Theory 
Theory [54]-[55]-[56] holding that a child’s understanding 
of mind is best understood in terms of the process of 
iteratively formulating and refuting a series of naïve theories 
about others.  Alternately, Gordon [57] postulates that 
theory of mind is related to the ability to run cognitive 
simulations of others’ minds using one’s own mind as a 
model.  We suggest that these two approaches are actually 
quite harmonious with one another.  In an uncertain AI 
context, both theories and simulations are grounded in 
collections of uncertain implications, which may be 
assembled in context-appropriate ways to form theoretical 
conclusions or to drive simulations.  Even if there is a 
special “mind-simulator” dynamic in the human brain that 
carries out simulations of other minds in a manner 
fundamentally different from explicit inferential theorizing, 
the inputs to and the behavior of this simulator may take 
inferential form, so that the simulator is in essence a way of 
efficiently and implicitly producing uncertain inferential 
conclusions from uncertain premises. 

The details via which a Novamente system should be able 
to develop theory of mind in the AGI-SIM world have been 
articulated in detail, though practical learning experiments in 
this direction have not yet been done.  We have not yet 
explored the possibility of giving Novamente a special 
“mind-simulator” component, though this would be 
possible; instead we have initially been pursuing a more 
purely inferential approach.   

First, it is very simple for a Novamente system to learn 
patterns such as “If I rotated by pi radians, I would see the 
yellow block.”  And it’s not a big leap for PLN to go from 
this to the recognition that “You look like me, and you’re 
rotated by pi radians relative to my orientation, therefore 
you probably see the yellow block.”  The only nontrivial 
aspect here is the “you look like me” premise. 

Recognizing “embodied agent” as a category, however, is 
a problem fairly similar to recognizing “block” or “insect” 
or “daisy” as a category.  Since the Novamente agent can 
perceive most parts of its own “robot” body--its arms, its 
legs, etc.--it should be easy for the agent to figure out that 
physical objects like these look different depending upon its 
distance from them and its angle of observation.  From this 
it should not be that difficult for the agent to understand that 
it is naturally grouped together with other embodied agents 
(like its teacher), not  with blocks or bugs.   

The only other major ingredient needed to enable theory 
of mind is “reflection”-- the ability of the system to 
explicitly recognize the existence of knowledge in its own 
mind (note that this term “reflection” is not the same as our 

proposed “reflexive” stage of cognitive development).  This 
exists automatically in Novamente, via the built-in 
vocabulary of elementary procedures supplied for use within 
SchemaNodes (specifically, the atTime and TruthValue 
operators).  Observing that “at time T, the weight of 
evidence of the link L increased from zero” is basically 
equivalent to observing that the link L was created at time T.   

Then, the system may reason, for example, as follows 
(using a combination of several PLN rules including the 
above-given deduction rule): 
 
Implication 
 My eye is facing a block and it is not dark 
 A relationship is created describing the block’s color  
Similarity 
 My body 
 My teacher’s body 
|- 
Implication 
 My teacher’s eye is facing a block and it is not dark 
 A relationship is created describing the block’s color  
 
This sort of inference is the essence of Piagetan “theory of 
mind.”  Note that in both of these implications the created 
relationship is represented as a variable rather than a specific 
relationship.  The cognitive leap is that in the latter case the 
relationship actually exists in the teacher’s implicitly 
hypothesized mind, rather than in Novamente’s mind.  No 
explicit hypothesis or model of the teacher’s mind need be 
created in order to form this implication--the hypothesis is 
created implicitly via inferential abstraction.  Yet, a 
collection of implications of this nature may be used via an 
uncertain reasoning system like PLN to create theories and 
simulations suitable to guide complex inferences about other 
minds. 
 From the perspective of developmental stages, the key 
point here is that in a Novamente context this sort of 
inference is too complex to be viably carried out via simple 
inference heuristics.  This particular example must be done 
via forward chaining, since the big leap is to actually think 
of forming the implication that concludes inference.  But 
there are simply too many combinations of relationships 
involving Novamente’s eye, body, and so forth for the PLN 
component to viably explore all of them via standard 
forward-chaining heuristics.  Experience-guided heuristics 
are needed, such as the heuristic that if physical objects A 
and B are generally physically and functionally similar, and 
there is a relationship involving some part of A and some 
physical object R, it may be useful to look for similar 
relationships involving an analogous part of B and objects 
similar to R.  This kind of heuristic may be learned by 
experience--and the masterful deployment of such heuristics 
to guide inference is what we hypothesize to characterize the 
concrete stage of development.  The “concreteness” comes 
from the fact that inference control is guided by analogies to 
prior similar situations. 
 



 
 

 

IX. SYSTEMATIC EXPERIMENTATION 
 
The Piagetan formal phase is a particularly subtle one from 
the perspective of uncertain inference.  In a sense, AI 
inference engines already have strong capability for formal 
reasoning built in.  Ironically, however, no existing 
inference engine is capable of deploying its reasoning rules 
in a powerfully effective way, and this is because of the lack 
of inference control heuristics adequate for controlling 
abstract formal reasoning.  These heuristics are what arise 
during Piaget’s formal stage, and we propose that in the 
content of uncertain inference systems, they involve the 
application of inference itself to the problem of refining 
inference control.   
 A problem commonly used to illustrate the difference 
between the Piagetan concrete operational and formal stages 
is that of figuring out the rules for making pendulums swing 
quickly versus slowly [10].  If you ask a child in the formal 
stage to solve this problem, she may proceed to do a number 
of experiments, e.g. build a long string with a light weight, a 
long string with a heavy weight, a short string with a light 
weight and a short string with a heavy weight.  Through 
these experiments she may determine that a short string 
leads to a fast swing, a long string leads to a slow swing, and 
the weight doesn’t matter at all. 
 The role of experiments like this, which test “extreme 
cases,” is to make cognition easier.  The formal-stage mind 
tries to map a concrete situation onto a maximally simple 
and manipulable set of abstract propositions, and then 
reason based on these.  Doing this, however, requires an 
automated and instinctive understanding of the reasoning 
process itself.  The above-described experiments are good 
ones for solving the pendulum problem because they 
provide data that is very easy to reason about.  From the 
perspective of uncertain inference systems, this is the key 
characteristic of the formal stage: formal cognition 
approaches problems in a way explicitly calculated to yield 
tractable inferences.   

Note that this is quite different from saying that formal 
cognition involves abstractions and advanced logic.  In an 
uncertain logic-based AI system, even infantile cognition 
may involve these--the difference lies in the level of 
inference control, which in the infantile stage is simplistic 
and hard-wired, but in the formal stage is based on an 
understanding of what sorts of inputs lead to tractable 
inference in a given context. 

X. CORRECTION OF INFERENCE BIASES 
 
Finally, we will briefly allude to an example of what we’ve 
called the “reflexive” stage in inference.  Recall that this is a 
stage beyond Piaget’s formal stage, reflecting the concerns 
of [25,28-31] that the Piagetan hierarchy ignores the 
ongoing development of cognition into adulthood. 
 Highly intelligent and self-aware adults may carry out 
reflexive cognition by explicitly reflecting upon their own 
inference processes and trying to improve them.  An 

example is the intelligent improvement of uncertain-truth-
value-manipulation formulas.  It is well demonstrated that 
even educated humans typically make numerous errors in 
probabilistic reasoning [57,58].  Most people don’t realize it 
and continue to systematically make these errors throughout 
their lives.  However, a small percentage of individuals 
make an explicit effort to increase their accuracy in making 
probabilistic judgments by consciously endeavoring to 
internalize the rules of probabilistic inference into their 
automated cognition processes. 
 The same sort of issue exists even in an AI system such as 
Novamente which is explicitly based on probabilistic 
reasoning.  PLN is founded on probability theory, but also 
contains a variety of heuristic assumptions that inevitably 
introduce a certain amount of error into its inferences.  For 
example, the probabilistic deduction formula mentioned 
above embodies a heuristic independence assumption. Thus 
PLN contains an alternate deduction formula called the 
“concept geometry formula” [41] that is better in some 
contexts, based on the assumption that ConceptNodes 
embody concepts that are roughly spherically-shaped in 
attribute space.  A highly advanced Novamente system 
could potentially augment the independence-based and 
concept-geometry-based deduction formulas with additional 
formulas of its own derivation, optimized to minimize error 
in various contexts.  This is a simple and straightforward 
example of reflexive cognition--it illustrates the power 
accessible to a cognitive system that has formalized and 
reflected upon its own inference processes, and that 
possesses at least some capability to modify these. 

XI. CONCLUSION 
 
AI systems must learn, but they must also develop: and 
development in this sense takes place over a longer time 
scale than learning, and involves more fundamental changes 
in cognitive operation. Understanding the development of 
cognition is equally as important to AI as understanding the 
nature of cognition at any particular stage.   

We have proposed a novel approach to defining 
developmental stages, in which internal properties of 
inference control systems are correlated with external 
learning capabilities, and have fleshed out the approach via 
giving a series of specific examples related to the 
Novamente AI Engine and the AGI-SIM world.   Our future 
work with Novamente will involve teaching it to perform 
behaviors in the AGI-SIM world, progressing gradually 
through the developmental stages described here, using 
examples such as those given.  Finally, we suspect that this 
approach to developmental psychology also has relevance 
beyond Novamente--most directly to other uncertain 
inference-based AI systems, and perhaps to developmental 
psychology in general. 
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