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Abstract—It is proposed that the creation of Artificial 
General Intelligence (AGI) at the human level and ultimately 
beyond is a problem addressable via integrating computer 
science algorithms and data structures within a cognitive 
architecture oriented toward experiential learning.  A general 
conceptual framework for AGI is presented, beginning with a 
philosophy of mind based on the concept of pattern, then 
moving to a general mathematical and conceptual framework 
for modeling intelligent systems, Self-Modifying Evolving 
Probabilistic Hypergraphs (SMEPH), and finally to an 
overview of a specific design for AGI, the Novamente AI 
Engine.  The problem of teaching an AGI system is discussed, 
in the context of Novamente’s embodiment in the AGI-SIM 
simulation world.  An educational program based loosely on 
Piaget’s developmental stages is outlined, followed by more 
detailed consideration of the learning by Novamente in AGI-
SIM of the Piagetan infant-level capability of “object 
permanence.”  

I. INTRODUCTION 

AI nowadays nearly always means “narrow AI” [1] – the 
creation of software programs carrying out highly specific 
functionalities that are typically considered “intelligent” 
when humans carry them out.  Because of this I have lately 
adopted the terminology “Artificial General Intelligence” 
(AGI) to refer to the pursuit of software systems that display 
a wide variety of intelligent functionalities, including a 
reasonably deep understanding of themselves and others, the 
ability to learn how to solve problems in areas they’ve never 
encountered before, the ability to create new ideas in a 
variety of domains, and the ability to communicate richly in 
language.  AGI research has been experiencing a long 
winter, from which it is now beginning to emerge.  

I summarize here a set of ideas that I have developed 
during the last two decades, which has led me to what I 
believe is a novel and productive way of thinking about 
general intelligence, and also to a specific design for an AGI 
system: the Novamente AGI design.  I review a series of 
three closely interconnected topics:  the patternist 
philosophy of mind, the Self-Modifying Evolving 
Probabilistic Hypergraphs (SMEPH) formalism for 
modeling intelligent systems, and then the Novamente 
design.  Each of these in itself is a very large topic, and so 

the discussion will necessarily be somewhat abstract.  
However, at the end I will get more concrete and describe 
some of the specific learning experiments we are now doing 
with the Novamente system, aimed at having it learn the 
sorts of things that a human infant learns when interacting 
with the world, and considered as the first steps in a 
coherent educational program with the end goal of general 
intelligence at the human level and beyond. 
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II. THE SURPRISING UNPOPULARITY OF AGI 
Why is AGI research so unpopular??   By and large, it’s 

not because AI researchers believe AGI is impossible.  The 
philosophy literature contains a variety of arguments against 
the possibility of generally intelligent software, but none are 
very convincing.  Perhaps the most sensible 
counterargument is the Penrose/Hameroff speculation that 
human intelligence is based on unspecified quantum gravity 
based dynamics operating within the brain [2]; but scientific 
evidence in favor of this conjecture is nonexistent.  It would 
seem most contemporary scientists believe that human-level 
and transhuman AGI is possible in principle.   

The most articulate argument so far created in favor of the 
in-principle possibility of AGI is Marcus Hutter’s [3] 
theoretical work on algorithmic information theory and 
decision theory, which involves positing a very general 
mathematical definition of intelligence and then proving 
rigorously that arbitrarily high degrees of intelligence are 
possible given arbitrarily large amounts of computational 
power.    If Hutter’s definition of intelligence is accepted, 
then his theorems show that with enough computing power, 
making AGI is trivial and can be done in a few dozen lines 
of easily-formulated LISP code.  But this insight doesn’t 
help much in creating practical AGI systems using tractable 
amounts of computational power – probably because, as per 
[4], the human brain consists of a collection of more or less 
clever tricks for achieving more or less general intelligence 
within strict computation-power constraints. 
 Many AI researchers seem to take the position that, while 
AGI is in principle possible, it lies far beyond our current 
technological capability.   This is reasonable enough, since 
according to the best available (quite speculative) estimates 
[5], current computing hardware at AI researchers’ disposal 
falls far short of the computing power of a single human 
brain.  But this isn’t necessarily an obstacle to creating 
powerful AGI on current computers using fundamentally 
non-brain-like architectures.   
 I believe the core reason there has been so little detailed 
research work on AGI is that there have been so few even 
moderately convincing general ideas in the area of AGI 



 
 

 

design.  Due to this fact, a number of highly knowledgeable 
researchers have effectively given up hope, opining that the 
only or most likely path to AGI is going to be the emulation 
of the human brain.  Eric Baum has presented this 
perspective very articulately in terms of the concept of 
“inductive bias” [4].  Much of human intelligence, he 
argues, is based on tacit knowledge accumulated over 
generations of evolution, which cannot feasibly be explicitly 
encoded in software.  Ray Kurzweil [6] has argued that 
brain imaging will yield a reasonably complete 
understanding of human brain structure and dynamics by the 
middle of this century, and that the achievement of AGI via 
human brain emulation will likely follow not long thereafter.   
 I find the Baum/Kurzweil perspective a plausible one, yet 
intuitively I don’t believe it.  The research project reported 
here seeks to refute this perspective via providing a detailed, 
thorough, high-quality design for a non-human-like AGI 
system, the Novamente system.  In-depth publications on 
aspects of Novamente are in preparation [7]-[8], and a few 
prior papers have touched on aspects of the system [9]-[10]-
[11], especially the knowledge representation and learning 
algorithms and the notion of experiential learning.  Here I 
will by and large remain at a higher level of abstraction and 
talk about what sort of AGI design I think it makes the most 
sense to pursue.  I will use the “patternist philosophy of 
mind” underlying Novamente as a way of structuring the 
analysis and discussion of the AGI problem.   
 While there has been a surprisingly long "AGI winter," at 
the moment there seem to be some signs of a renaissance, 
and the Novamente project is not the only one to emerge 
lately addressing the AGI problem.  A complete review of 
the current literature would be out of place here but among 
the recent projects with the closest relationship to 
Novamente must be listed Pei Wang's NARS project [12]-
[13]-[14], John Weng's SAIL architecture [15], Nick 
Cassimatis's PolyScheme [16], Stuart Shapiro's SnEPs [17], 
and Robert Hecht-Nielsen's confabulation approach [18].  
All these are current projects actively addressing AGI.   
 To fully explore the relation between these projects and 
Novamente would take us too far afield, but suffice it to say 
that the relationships exist and are interesting.  For instance: 
NARS is based on an uncertain logic closely related to 
Novamente's PLN inference system.  SnEPs is based on 
paraconsistent logic, whereas Novamente's PLN logic is also 
paraconsistent; furthermore, both SnEPs and Novamente 
have been used to control an agent in a simulation world 
based on the CrystalSpace game engine, based on somewhat 
similar approaches to embodied perception and action.  
Hecht-Nielsen's "confabulation" operation occurs naturally 
within Novamente as a consequence of PLN inference. 
 But there are also very significant differences between 
these other recent approaches and Novamente; and some of 
these differences are foundational and conceptual rather than 
technical.  Novamente embodies a particular conceptual 
understanding of mind and intelligence; in this brief 
overview my goal is to get across a few important aspects of 
this conceptual understanding and explain how they 

manifest themselves in the AI architecture and in our plan 
for teaching Novamente. 

III. PATTERNIST PHILOSOPHY OF MIND 
 The ultimate conceptual foundation of Novamente is 

patternist philosophy of mind: a general approach to 
thinking about intelligent systems, which is based on the 
very simple premise that “mind is made of pattern.”   This in 
itself is not a very novel idea – it is present, for instance, in 
the 19’th-century philosophy of Charles Peirce [19], in the 
writings of contemporary philosopher Daniel Dennett [20], 
in Benjamin Whorf’s [21] linguistic philosophy and Gregory 
Bateson’s [22] systems theory of mind and nature.  Bateson 
spoke of the Metapattern: “that it is pattern which connects.”  
In a series of prior writings [23]-[24]-[25]-[26]-[27] and in a 
forthcoming book [28] I have sought to pursue this theme 
more thoroughly than has been done before, and to articulate 
in detail how various aspects of human mind and mind in 
general can be well-understood by explicitly adopting a 
patternist perspective.  This work, which has previously 
been labeled the “psynet model of mind,” includes attempts 
to formally ground the notion of pattern in mathematics such 
as algorithmic information theory [29] and probability 
theory, beginning from the conceptual notion that “a pattern 
is a representation as something simpler” and then utilizing 
appropriate mathematical concepts of representation and 
simplicity. 
 In the patternist perspective, the mind of an intelligent 
system is conceived as the set of patterns in that system, and 
the set of patterns emergent between that system and other 
systems with which it interacts.  The latter clause means that 
the patternist perspective is inclusive of notions of 
“distributed intelligence” [30].  Intelligence is conceived, 
similarly to in Hutter’s work, as the ability to achieve 
complex goals in complex environments; where complexity 
itself may be defined as the possession of a rich variety of 
patterns.  A mind is thus a collection of patterns that is 
associated with a persistent dynamical process that achieves 
highly-patterned goals in highly-patterned environments.   
 An additional hypothesis made within the patternist 
philosophy of mind is that reflection is critical to 
intelligence.  This lets us conceive an intelligent system as a 
dynamical system that recognizes patterns in its environment 
and itself, as part of its quest to achieve complex goals. 
 While this approach is quite general, it is not vacuous; it 
gives a particular structure to the tasks of analyzing and 
synthesizing intelligent systems.  About any would-be 
intelligent system, we are led to ask questions such as: 

    --How are patterns represented in the system?  That is, 
how does the underlying infrastructure of the system give 
rise to the displaying of a particular pattern in the system’s 
behavior?   

    --What kinds of patterns are most compactly 
represented within the system? 

    --What kinds of patterns are most simply learned? 
    --What learning processes are utilized for recognizing 

patterns? 



 
 

 

    --What mechanisms are used to give the system the 
ability to introspect (so that it can recognize patterns in 
itself?) 

These same sorts of questions could be asked if one 
substituted the word “pattern” with other words like 
“knowledge” or “information.”  However, I have found that 
asking these questions in the context of pattern leads to more 
productive answers, because the concept of pattern ties in 
very nicely with the details of various existing formalisms 
for knowledge representation and learning. 

IV. SELF-MODIFYING, EVOLVING PROBABILISTIC 
HYPERGRAPHS 

Patternist philosophy is extremely general, which is both a 
strength and a weakness.  In order to more effectively apply 
it to the AGI problem, I have created an intermediate 
formalism called Self-Modifying, Evolving Probabilistic 
Hypergraphs (SMEPH).  SMEPH is a more specific 
formalism for describing intelligent systems; it is consistent 
with patternist philosophy but provides more guidance 
regarding the analysis and construction of AGI  systems. 

The basic ideas underlying SMEPH are threefold, as the 
acronym would suggest:  

    --To use a specific mathematical structure called a 
“generalized hypergraph” to model intelligent systems.   

    --To study the way hypergraphs change over time (i.e. 
they way they evolve” -- the word “evolution” is used here 
in a general sense, rather than specifically in the sense of 
evolution by natural selection, although that is an aspect of 
SMEPH as well when one delves into the details.) 

    --To use probability theory to study the relationships 
between the parts of the hypergraph. 

A hypergraph is an abstract mathematical structure [31], 
which consists of objects called Vertices and objects called 
Edges, which connect the Vertices.  A hypergraph differs 
from a graph in that it can have Edges that connect more 
than two Vertices; and SMEPH’s hypergraphs extend 
ordinary hypergraphs to contain additional features such as 
Edges that point to Edges instead of Vertices; or Vertices 
that, when you zoom in on them, contain embedded 
hypergraphs.   Properly, SMEPH’s hypergraphs should 
always be referred to as “generalized hypergraphs,” but we 
will persist in calling them “hypergraphs” instead.  In a 
SMEPH hypergraph, edges and vertices are not as distinct as 
they are within an ordinary mathematical graph, and so it is 
useful to have a generic term encompassing both Edges and 
Vertices; for this purpose, in SMEPH and Novamente, we 
use the term “Atom.”   

A “weighted, labeled hypergraph” is a hypergraph whose 
Edges and Vertices come along with labels, and with one or 
more numbers generically called ”weights.”  The label 
associated with an Edge or Vertex may sometimes be 
interpreted as telling you what “type” of entity it is.  On the 
other hand, an example of a weight that may be attached to 
an Edge or Vertex is a probability, or a number representing 
how important the Vertex or Edge is to the system. 

Hypergraphs may come along with various dynamics.  
Minimally, one may think about: 

    --Dynamics that modify the properties of Vertices or 
Edges in a hypergraph (e.g.  the weights attached to them.) 

    --Dynamics that add new Vertices or Edges to a 
hypergraph, or remove existing ones.   

The SMEPH approach to intelligence is centered on a 
particular collection of Vertex and Edge types.  The key 
Vertex types are ConceptVertex and SchemaVertex, the 
former representing an idea or a set of percepts, and the 
latter representing a procedure for doing something (perhaps 
something in the physical world, or perhaps an abstract 
mental action).  The key Edge types are 
ExtentionalInheritanceEdge (ExtInhEdge for short: an edge 
which, linking one Vertex or Edge to another, indicates that 
the former is a special case of the latter), 
ExtensionalSimilarityEdge (ExtSim: which indicates that 
one Vertex or Edge is similar to another), and 
ExecutionEdge (a ternary edge, which joins {S,B,C} when S 
is a SchemaVertex and the result from applying S to B is C).  
So, in a SMEPH system, one is often looking at hypergraphs 
whose Vertices represent ideas or procedures, and whose 
Edges represent relationships of specialization, similarity or 
transformation among ideas and/or procedures.   

ExtInh and ExtSim Edges come with probabilistic weights 
indicating the extent of the relationship they denote (e.g. the 
ExtSimEdge joining the “cat” ConceptVertex to the “dog” 
ConceptVertex gets a higher probability weight than the one 
joining the “cat” ConceptVertex to the “washing-machine” 
ConceptVertex).  The mathematics of transformations 
involving these probabilistic weights becomes quite 
involved -- particularly when one introduces 
SchemaVertices corresponding to abstract mathematical 
operations, a step that enables SMEPH hypergraphs to have 
the complete mathematical power of standard logical 
formalisms like predicate calculus, but with the added 
advantage of a natural representation of uncertainty in terms 
of probabilities, as well as a natural representation of 
networks and webs of complex knowledge. 

SMEPH hypergraphs may be used to model and describe 
intelligent systems (such as human mind/brains, for 
example).  One can (in principle) draw a SMEPH 
hypergraph corresponding to an individual intelligent 
system, with Vertices and Edges for the concepts and 
processes in that system’s mind.   This leads to what is 
called the “derived hypergraph” of that system.  More 
specifically, a ConceptVertex in the derived hypergraph of a 
system corresponds to a structural pattern that persists over 
time in that system; whereas a SchemaVertex corresponds to 
a multi-time-point dynamical pattern that recurs in that 
system’s dynamics.  Drawing the derived hypergraph of an 
intelligent system is one way of depicting the mind of that 
system – this follows from the definition of a mind as the set 
of patterns in an intelligent system, and the fact (which 
follows from mathematical pattern theory) that the patterns 
in the system can be read off from the derived hypergraph. 

Pattern theory enters more deeply here when one 
thoroughly fleshes out the Inheritance concept.  
Philosophers of logic have extensively debated the 
relationship between “extensional” inheritance (inheritance 



 
 

 

between sets based on their members) and “intensional” 
inheritance (inheritance between entity-types based on their 
properties).  A variety of formal mechanisms have been 
proposed to capture this conceptual distinction; see [12]-
[13]-[14] for a review along with a novel approach utilizing 
uncertain term logic.  Pattern theory provides a novel 
approach to defining intension: one may associate with each 
ConceptVertex in a system’s derived hypergraph the set of 
patterns associated with the structural pattern underlying that 
ConceptVertex.  Then, one can define the strength of the 
IntensionalInheritanceEdge between two ConceptVertices A 
and B as the percentage of A’s pattern-set that is also 
contained in B’s pattern-set.  According to this approach, for 
instance, one could have 

 
IntInhEdge whale fish <0.6> 

 
ExtInhEdge whale fish <0.0> 

 
since the fish and whale sets have common properties but no 
common members (where “R A B” denotes an Edge of type 
R between Vertices A and B; and the numbers in <>s denote 
strength values associated with Edges). 

As well as being used to conceptually model intelligent 
systems, SMEPH hypergraphs may also be used as the 
foundation of an AGI design.  In this case, a SMEPH 
hypergraph is used explicitly as the medium for the (long 
and short term) memory of an intelligent system, and its 
thought processes are explicitly described and implemented 
as dynamics modifying this hypergraph.  Such a SMEPH-
based intelligence will also have a derived hypergraph, 
which will not be identical to the hypergraph it uses for 
explicit knowledge representation.  However, an interesting 
feedback loop arises here, in that the intelligence’s self-
study will generally lead it to recognize large portions of its 
derived hypergraph as patterns in itself, and then embody 
these patterns within its concretely implemented knowledge 
hypergraph.  The Novamente AI system, which I will 
discuss here, is the second in a series of AGI-oriented AI 
systems specifically based on the SMEPH framework; the 
first was the Webmind AI Engine [27]-[32]. 

V. KNOWLEDGE REPRESENTATION, LEARNING AND 
REASONING IN NOVAMENTE 

The remainder of the paper focuses on the Novamente AI 
Engine, a specific software design and software system 
aimed at powerful AGI.  The Novamente project is ongoing, 
and the current software implementation of the Novamente 
AI design is somewhere between 20% and 60% complete, 
depending on how you measure it.  What is discussed here is 
mainly the AGI design rather than the state of the current 
implementation; however I will occasionally insert 
comments regarding what has currently been implemented 
and tested and what has not. 

Novamente’s knowledge representation must be 
considered on two levels: implicit and explicit.  The explicit 
knowledge representation is a SMEPH-style generalized 
hypergraph, which I will refer to here as a hypergraph of 

Nodes and Links, to distinguish it from the Vertices and 
Edges in the SMEPH derived hypergraph of a Novamente 
system.  This includes ConceptNodes and SchemaNodes, 
where SchemaNodes are represented as mathematical 
objects using arithmetic, logical and combinatory operators 
to combine elementary data types and Novamente Nodes 
and Links, designed to enable compact expression of useful 
cognitive procedures.   It also includes a number of other 
node types including PredicateNodes (SchemaNodes that 
produce truth values as their outputs) and various kinds of 
Nodes representing particular kinds of concrete information, 
such as NumberNodes, WordNodes, PolygonNodes, and so 
forth.  A moderately extensive list is given in [11] and will 
not be repeated here. 

In addition to explicit knowledge representation in terms 
of Nodes and Links, Novamente also incorporates implicit 
knowledge representation in the form of what are called 
"maps": collections of Nodes and Links that tend to be 
utilized together within cognitive processes.  To see the need 
for maps, consider that even a Node that has a particular 
meaning attached to it – like the “Iraq” Node, say – doesn’t 
contain much of the meaning of “Iraq” in it.  The meaning of 
“Iraq” lies in the Links attached to this Node, and the Links 
attached to their Nodes – and the other Nodes and Links not 
explicitly represented in the system, which will be created 
by Novamente’s cognitive algorithms based on the explicitly 
existent Nodes and Links related to the “Iraq” Node.   This 
halo of Atoms related to the “Iraq” node is called the “Iraq” 
map.   In general, some maps will center around a particular 
Atom, like this “Iraq” map, others may not have any 
particular identifiable center.  Novamente's cognitive 
processes act directly on the level of Nodes and Links, but 
they must be analyzed in terms of their impact on maps as 
well.  In SMEPH terms, Novamente maps may correspond 
to SMEPH ConceptVertices, and for instance bundles of 
Links between the Nodes belonging to a map may 
correspond to a SMEPH Edge between two ConceptVertices 
 SMEPH ExtInhLinks and IntensionalInheritanceLinks 
exist in Novamente, along with a variety of related link 
types; Novamente contains a probabilistic reasoning engine 
called Probabilistic Logic Networks (PLN)1 which exists 
specifically to carry out reasoning on these relationships, 
and will be described in a forthcoming publication [8].  The 
mathematics of PLN contains many subtleties, and there are 
relations to prior approaches to uncertain inference 
including NARS [12]-[12]-[14] and Walley’s theory of 
interval probabilities [33].  An essentially complete software 
implementation of PLN exists within the current Novamente 
codebase and has been tested on various examples of 
mathematical and commonsense inference. 
 In addition to PLN, Novamente’s other main learning 
mechanism is a modification of evolutionary learning called 
MOSES (Meta-Optimizing Semantic Evolutionary Search), 
a descendant of the Bayesian Optimization Algorithm 
Programming (BOAP) algorithm described in [34]-[35].   
MOSES is an algorithm for learning PredicateNodes or 

 
1 Formerly named Probabilistic Term Logic (PTL) 



 
 

 

SchemaNodes satisfying specified criteria.  For instance if a 
goal G and context C are given then it may be used to learn 
a compact SchemaNode S so that the statement 
 
“When context C holds and schema S is 
executed, goal G is achieved” 
 
holds with a high truth value.  (Typically the goal and 
context would be specified as PredicateNodes.)   MOSES is 
a modification of the genetic programming algorithm [36], 
but with some substantial differences, including: 

    --As in BOA [37], crossover and mutation are 
augmented by a probabilistic modeling process in which the 
population of candidate solutions is studied statistically and 
then new candidate solutions are generated from the inferred 
probability distribution 

    --Candidate “programs” (PredicateNodes/ 
SchemaNodes) are normalized using algebraic simplification 
routines prior to being probabilistically modeled or crossed 
over 

BOAP was integrated into the Novamente codebase in 
2003 and tested on a number of examples in the domain of 
quantitative and relational data mining.  MOSES is currently 
under active development within the Novamente system and 
at time of writing is being tested on various relevant 
problems on its own and in combination with PLN. 

MOSES complements PLN: whereas PLN’s job is to 
extrapolate existing knowledge and build new Nodes and 
Links that directly follow from old ones in an incremental 
way, MOSES’s job is to create complex combinations of 
Nodes and Links “out of the blue,” via heuristic, 
evolutionary/probabilistic exploration of the large space of 
possibilities. The interrelation between these two learning 
algorithms was described in a little more depth in prior 
overview papers on the Novamente system [9]-[10]-[11]. 

Pattern theory enters here in a very direct way, via the 
standard inclusion of a “compactness criterion” in the fitness 
function used to guide MOSES’s evolutionary learning.  
Without a compactness criterion on the fitness function, 
MOSES would simply learn complex patterns “overfit” to 
its historical training data; the compactness criterion means 
that MOSES has to actually recognize patterns in its training 
data (keeping in mind the definition of a pattern as “a 
representation as something simpler”).  MOSES searches for 
patterns out of the blue; PLN takes existing patterns and 
uses them to incrementally infer new ones. 

The use of PLN and MOSES to recognize patterns among 
the Nodes and Links in the AtomTable, and to create new 
Nodes and Links based on these patterns, is a specific 
manifestation of the general idea introduced above of an 
intelligent system studying itself, recognizing its own 
derived SMEPH hypergraph, and thus embodying this 
derived hypergraph in its own explicit structure.  
Novamente’s learning algorithms may recognize patterns in 
Nodes and Links representing perceptions and actions, but 
also in Nodes and Links representing abstract ideas and even 
self-models: in this way the architecture is built with 
introspection at its foundation. 

The final critical aspect of Novamente learning is 
“attention allocation” or “assignment of credit.”  This has to 
do with regulating the system’s own cognitive activities, an 
issue that has many different aspects.  Firstly, in practice a 
Novamente instance can’t maintain an arbitrarily large 
hypergraph in memory, so prioritization decisions must be 
made regarding which Nodes and Links to remove from 
RAM and save to disk.  Next, among those Atoms 
remaining in RAM, decisions must be made regarding which 
ones to think about: which ones to feed to PLN reasoning, 
and which ones to consider as goals for the guidance of 
MOSES learning.  A variety of schemes for making such 
decisions exist [38], but Novamente takes a somewhat novel 
approach.  Special Links called HebbianLinks are created, 
indicating the degree to which the utility of one Atom 
implies the utility of another.  PLN and MOSES are then 
used to infer new HebbianLinks and new PredicateNodes 
involving HebbianLinks, from the original HebbianLinks 
learned via direct experience.   In short, these “meta-level” 
learning processes are handled via the same cognitive 
mechanisms used for ordinary learning.  This approach to 
credit assignment is scheduled for coding and testing in mid-
2006. 

VI. NOVAMENTE’S COGNITIVE ARCHITECTURE 
The cognitive architecture within which the 

representational, learning and reasoning mechanisms above 
exist is a fairly simple one.  A Novamente instance is 
divided into a set of Units, each of which contains an 
AtomTable containing a hypergraph of Nodes and Links, 
and also a set of MindAgent objects embodying various 
cognitive processes (see [11] for a fairly comprehensive list 
of MindAgents).  Example MindAgents include Clustering, 
Spontaneous First-Order Inference, Goal-Directed 
Inference, Object Recognition, and Credit Assignment. The 
MindAgents are perpetually cycled through, carrying out 
recurrent actions and creating Task objects that carry out 
processor-intensive one-time actions.  Different Units deal 
with different high-level cognitive functions and may 
contain different mixes of MindAgents, or at least 
differently-tuned MindAgents. 
 In [10] we describe a specific Novamente configuration, 
intended for “experiential learning” – and more specifically, 
for a Novamente system that controls a real or simulated 
body that is perceiving and acting in some world.  Currently 
we are not working with physical robotics but are rather 
using Novamente to control a simple simulated body in a 3D 
simulation world called AGI-SIM [39].   It would also be 
possible to construct Novamente configurations unrelated to 
any kind of embodiment; for instance, we have designed a 
configuration intended specifically for mathematical 
theorem-proving.  However, as argued in [40], we believe 
that pursuing some form of embodiment is likely the best 
way to approach AGI.  This is not because intelligence 
intrinsically requires embodiment, but rather because 
physical environments present a host of useful cognitive 
problems at various levels of complexity, and also because 
understanding of human beings and human language will 



 
 

 

probably be much easier for AI’s that share humans’ 
grounding in physical environments. 

This experiential learning configuration centers around a 
Unit called the Central Active Memory, which is the primary 
cognitive engine of the system.  There is also a Unit called 
the Global Attentional Focus, which deals with Atoms that 
have been judged particularly important and subjects them 
to intensive cognitive processing.  There are Units dealing 
with sensory processing and motor control; and then Units 
dealing with highly intensive PLN or MOSES based pattern 
recognition, using control mechanisms that are not friendly 
about ceding processor time to other cognitive processes.  
Each Unit may potentially span multiple machines; the idea 
is that communication within a Unit must be very rapid, 
whereas communication among Units may be slower. 
 Psychologically, one may think of the Novamente 
system’s activities as falling into two categories: goal-driven 
and ambient.  Ambient cognitive activity includes for 
instance  

    --MindAgents that carry out basic PLN operations on 
the AtomTable, deriving obvious conclusions from existing 
knowledge 

    --MindAgents that carry out basic perceptual activity, 
e.g. recognizing coherent objects in the perceptual stimuli 
coming into the system 

    --MindAgents related to attention allocation and 
assignment of credit 

    --MindAgents involved in moving Atoms between disk 
and RAM.   

Goal-driven activity, on the other hand, involves an 
explicitly maintained list of goals that is stored in the Global 
Attentional Focus and Central Active Memory.  Two key 
processes are involved: 

    --Learning SchemaNodes that, if activated, are 
expected to lead to goal achievement 

    --Activating SchemaNodes that, if activated, are 
expected to lead to goal achievement 

    --The goal-driven learning process is ultimately a form 
of “backward-chaining learning,” but subtler than usual 
backward chaining due to its interweaving of PLN and 
MOSES and its reliance on multiple cognitive Units. 

VII. DEVELOPMENTAL STAGES 
So far I have very loosely described a cognitive 

architecture, a knowledge representation and a set of 
learning mechanisms.  These merely set the stage for the 
self-organization and reflective learning processes that are 
what really make a mind: they lead us to the fascinating and 
critical topic of AGI education.  The basic principle 
underlying any reasonable AGI educational program must 
be the hierarchical composition of (conceptual, perceptual 
and behavioral) patterns.  Advanced intelligence requires the 
recognition of complex patterns, but the search space of 
possible complex patterns is very large, and so a mind must 
work up to learning complex patterns via starting out with 
simple patterns and then incrementally building more and 
more complex patterns from the ones it already knows.  PLN 
and MOSES are designed to be good at this kind of 

hierarchical building.  The point of teaching an AGI is to 
present it with a series of learning problems that require it to 
learn to recognize more and more complex patterns, in an 
order that matches naturally with the logical buildup of more 
and more complex patterns from initially simple elements. 
 The teaching program we are using for Novamente is 
based on a loose adaptation of Jean Piaget’s classic 
development psychology ideas [41] to the context of the 
AGI-SIM simulation world.  Our approach to developmental 
psychology is based on an attempt to integrate Piaget's 
conceptual insights with more recent developmental 
psychology theories [42, 43] in a manner consistent with 
Novamente, SMEPH and patternist philosophy.  

Piaget conceived of child development as falling into four 
stages, each roughly identified with an age group: infantile, 
preoperational, concrete operational, and formal. 

    --Infantile:  Basic world-exploration; instinctive 
actions; reward-driven repetition of actions; imitation of 
others' actions; simple associations between words and 
object, actions and images.  One of the major learning 
achievements here is object permanence – infants learn that 
objects persist even when not being observed. 

    --Preoperational: The formation of mental 
representations, mostly poorly organized and un-abstracted; 
mostly intuitive rather than logical thinking.  Word-object 
and image-object associations become systematic rather than 
occasional.  Simple syntax is mastered, including an 
understanding of subject-argument relationships. 

    --Concrete Operational: More abstract logical thought 
applied to the physical world. Among the feats achieved 
here are: reversibility -- the ability to undo steps already 
done; conservation -- understanding that properties can 
persist in spite of appearances; theory of mind – an 
understanding of the distinction between what I know and 
what others know.  (If I cover my eyes, can you still see 
me?)  Concrete operations such as putting items in height 
order are easily achievable. Classification become more 
sophisticated. 

    --Formal: Abstract deductive reasoning, the process of 
forming then testing hypotheses, etc.  This is full, adult 
human-level intelligence.  Note that the capability for formal 
operations is intrinsic in the PLN component of Novamente, 
but in-principle capability is not the same as pragmatic, 
embodied, controllable capability.   

Inspired by Piaget's general ideas we have created our 
own series of developmental stages, defined roughly as 
follows: 

    --Infantile: Able to recognize patterns in and conduct 
inferences about the world, but only using simplistic hard-
wired (not experientially adapted) inference control 
schemata 

    --Concrete Operational: Able to carry out more 
complex chains of reasoning regarding the world, via using 
inference control schemata that adapt their behavior based 
on experience (reasoning about a given case in a manner 
similar to what worked in prior similar cases). 

    --Formal: Able to carry out arbitrarily complex 
inferences (constrained only by computational resources) via 



 
 

 

including inference control as an explicit subject of abstract 
learning. 

    --Reflexive: Capable of thorough self-modification of 
all internal structures. 

Here Piaget's pre-operational phase appears as transitional 
between the infantile and concrete operational phases.  We 
have designed specific Novamente / AGI-SIM learning tasks 
based on all the key Piagetan themes.  Currently our 
concrete work is near the start of this list, at Piaget’s 
infantile stage.   

VIII. LEARNING OBJECT  PERMANENCE 
Next I will discuss the specific task of learning object 

permanence, a topic which will require a brief digression 
into the simple visual system via which Novamente 
interfaces with the AGI-SIM world.  Rather than perceiving 
individual pixels or voxels within AGI-SIM, Novamente 
perceives AGI-SIM in terms of polygons.  A PolygonNode 
represents a polygon observed at a point in time.  A 
PersistentPolygonNode (PPNode) then represents a series of 
PolygonNodes that are heuristically guessed to represent the 
same PolygonNode at different moments in time.  Before 
object permanence is learned, the heuristics for recognizing 
PPNodes will only work in the case of a persistent polygon 
that, over an interval of time, is experiencing relative motion 
within the visual field, but is never leaving the visual field.  
For example some useful heuristics are: If P1 occurs at time 
t, P2 occurs at time s where s is very close to t, and P1 are 
similar in shape, size and color and position, then P1 and P2 
should be grouped together into the same PPNode. 

AdjacencyLinks are created between PPNodes, via a 
special formula that maps the relative positions of two 
polygons into a “strength” value in [0,1].   Then a Clustering 
MindAgent looks for clusters in the graph of 
AdjacencyLinks between PPNodes: these clusters become 
AGISIMObjectNodes.  These mechanisms are relatively 
straightforward – all they do is recognize an object as a set 
of persistent polygons that cohere together within the visual 
field during some continuous interval of time.   If an 
observed object leaves the visual field and then re-enters, 
then these low-level in-built mechanisms don’t tell 
Novamente anything about it.  If a ball disappears behind a 
chair and then reappears, then upon reappearance it is 
classified as a new object!  The Piagetan task of object 
permanence requires Novamente to learn that in fact it is still 
the same ball after it has reappeared.   

This is not a very hard reasoning task.  For instance, if the 
system is given multiple balls to play with, with different 
(unique) markings on them, then it can learn via experience 
that if a ball with marking X goes behind the chair, and it 
then goes behind the chair, it will find a ball with marking X 
rather than some other marking.  Simple though it seems, 
this knowledge is represented in Novamente via a predicate 
involving a couple dozen different Nodes and Links, and 
learning it either requires a lengthy MOSES run or some 
fairly intensive backward-chaining inference.  And a more 
interesting sort of inference occurs after this.  Suppose the 
system has learned that balls retain markings: can it then 

extend this knowledge to infer the permanence of other sorts 
of objects?  This requires what in PLN theory is called 
abductive inference [11]-[12]. 

This example illustrates the difference between AGI 
research and narrow-AI research.  In this case, we are 
making Novamente learn something that we could very 
easily tell it instead (information regarding what objects 
exist in AGI-SIM is there explicitly in the AGI-SIM server, 
and could merely be passed to Novamente).  We take this 
approach because we believe that minds most naturally learn 
complex things via analogy to simple things, and that 
analogies are most easily drawn to concepts and procedures 
about which a rich network of patterns has been formed.  
When Novamente reaches the concrete operational stage and 
needs to learn conservation laws, its job will be easier 
because it will be able to draw on its experience learning 
object permanence.  Conservation of mass is basically “mass 
permanence,” and the procedures it has developed for 
“learning about permanence” in the context of object 
permanence will be useful for it in learning about mass 
permanence.  This simple example illustrates the general 
principle of composition of patterns, via which learning 
algorithms build complex patterns from simple ones. 

IX. CONCLUSION 
Creating AGI at the human level and ultimately beyond 

is, I suggest, a very difficult but not impossible problem to 
solve.  There is no reason to believe that emulating the 
human brain is the only viable solution.  General 
intelligence is complex but not all that mysterious.   

General intelligence requires a robust mechanism for the 
representation of general patterns, which gives compact 
representations to particular patterns of use to a particular 
system adapted to in a particular environment.  It then 
requires learning algorithms for extrapolating new patterns 
from existing ones (i.e. for recognizing aspects of the 
derived SMEPH hypergraph implicit in a system and 
explicitly embodying them within the system’s knowledge 
base).  General learning algorithms are needed, both 
incremental ones (like PLN) and global, speculative ones 
(like MOSES).  Specialized learning algorithms are needed, 
in order to address frequently encountered resource-
intensive learning problems in an efficient way (the specific 
heuristics for dealing with polygons mentioned above are an 
example of this).  A flexible cognitive architecture is 
needed, able to incorporate ambient and goal-directed 
learning and to integrate various general and specialized 
learning mechanisms.  Attention allocation and assignment 
of credit must be carried out effectively, which can be done 
if they are taken seriously and treated as difficult pattern 
recognition problems on par with others.  Finally, 
recognizing complex patterns right from the start is too hard 
-- a mind must receive a sensible education that encourages 
the build-up of more and more complex patterns in a 
meaningful order; and one natural way to structure this 
educational process is to embed the mind in a body 
perceiving and acting in a world. 



 
 

 

Patternist philosophy and SMEPH are not the only way to 
think about general intelligence; and Novamente is not the 
only possible AGI design consistent with patternist 
philosophy and SMEPH, let alone the only feasible AGI 
design.  Almost surely there are many viable routes to AGI – 
and my suspicion is that there are many viable routes that 
are achievable using current computer science knowledge 
and current computing hardware.   My goal here has been to 
present a high-level overview of one viable approach. 
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