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Abstract. A teaching methodology called Imitative-Reinforcement-Corrective 
(IRC) learning is described, and proposed as a general approach for teaching 
embodied non-linguistic AGI systems.  IRC may be used with a variety of 
different learning algorithms, but it is particularly easily described in EC lingo.  In 
these terms, it is a framework for automatically learning a procedure that generates 
a desired type of behavior, in which: a set of exemplars of the target behavior-type 
are utilized for fitness estimation; reinforcement signals from a human teacher are 
used for fitness evaluation; and the execution of candidate procedures may be 
modified by the teacher via corrections delivered in real-time.  An example 
application of IRC to teach behaviors to AI-controlled artificial animals embodied 
in the Second Life virtual world is described in detail, including a review of the 
overall virtual-animal-control software architecture and how the integrative 
teaching/learning methodology fits into it.  In this example application 
architecture, the learning algorithm may be toggled between hillclimbing and 
probabilistic evolutionary learning.  Envisioned future applications are also 
discussed, including an application to embodied language learning applicable to 
agents in Second Life and other virtual worlds. 

Keywords. Reinforcement learning, imitative learning, corrective learning, 
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Introduction 

Supposing one intelligent agent (the “teacher”) has knowledge of how to carry out a 
certain behavior, and wants to transfer this knowledge to another intelligent agent (the 
“student”).  But, suppose the student agent lacks the power of language (which might 
be, for example, because language is the thing being taught!).  How may the knowledge 
be transferred?  At least three methodologies are possible: 

 
• Imitative learning: The teacher acts out the behavior, showing the 

student by example 



• Reinforcement learning: The student tries to do the behavior himself, 
and the teacher gives him feedback on how well he did 

• Corrective learning: As the student attempts the behavior, the teacher 
actively corrects (i.e. changes) the student’s actions, guiding him toward 
correct performance 

 
Obviously, these three forms of instruction are not exclusive.   What we describe 

here, and call IRC learning, is a pragmatic methodology for instructing AGI systems 
that combines these three forms of instruction.  We believe this combination is a potent 
one, and is certainly implicit in the way human beings typically teach young children 
and animals.   

We present IRC learning here primarily in the context of virtually embodied AGI 
systems – i.e., AGI systems that that control virtual agents living in virtual worlds.  
There is an obvious extension to physical robots living in the real world and capable of 
flexible interaction with humans.  In principle, IRC learning is applicable more broadly 
as well, and could be explored in various non-embodied context such as (for instance) 
automated theorem-proving.  In general, the term “IRC learning” may be 
used to describe any teacher/student interaction that involves a combination of 
reinforcement, imitation and correction.   While we have focused in our practical work 
so far on the use of IRC to teach simple “animal-like” behaviors, the application that 
interests us more in the medium term is language instruction, and we will enlarge upon 
this a bit in the Conclusion.   

In collaboration with The Electric Sheep Company, our software firm Novamente 
LLC is currently in the midst of creating a large-scale commercial implementation of 
IRC learning, as a methodology for teaching virtual animals in Second Life and other 
online virtual worlds.   The virtual animals we are  now experimenting with are 
nonlinguistic animals that can carry out spontaneous behaviors while seeking to 
achieve their own goals. and can also specifically be trained by human beings to carry 
out novel tricks and other behaviors (which were not programmed into them, but rather 
must be learned by the AI on the fly based on interaction with an avatar controlled by a 
human teacher).   This current experimental work will be used as the basis of a 
commercial product to be launched sometime in 2008. 

In Section 2 we will give a brief overview of our virtual-animal software 
architecture, and explain how the IRC methodology fits in, utilizing either hillclimbing 
or evolutionary learning, allied with simple inference, as the underlying learning engine 
(aspect 3 above).  This software is work-in-progress and we don’t yet have anywhere 
near a full understanding of what the strengths and limitations of the IRC methodology 
will be in this context, but it has already proved capable of learning some simple 
behaviors and we are confident it will prove considerably extensible.   After describing 
this Second Life virtual animal application in detail, we then briefly review our plans 
for future R&D, which include a subsequent application to embodied language learning 
in Second Life and other virtual worlds. 

 

1.1. IRC Learning in the Context of the Quest for Powerful AGI 

 
One may decompose the overall task of creating a powerful AGI system into four 
 



aspects (which of course are not entirely distinct, but still are usefully distinguished): 
 
1. Cognitive architecture (the overall design of an AGI system: what parts does 

it have, how do they connect to each other) 
2. Knowledge representation (how does the system internally store declarative, 

procedural and episodic knowledge; and now does it create its own 
representation for knowledge of these sorts in new domains it encounters) 

3. Learning (how does it learn new knowledge of the types mentioned above; 
and how does it learn how to learn, and so on) 

4. Teaching methodology (how is it coupled with other systems so as to enable 
it to gain new knowledge about itself, the world and others) 

  
This article focuses on the fourth of these aspects, presenting some ideas about 

AGI teaching methodology that we believe to have quite general significance, although 
they were developed in the context of a specific AGI system (the Novamente Cognition 
Engine) that is founded on specific commitments regarding the other three aspects.   
For the first author’s views on the other three aspects of AGI, in the context of the NCE 
and more generally, the reader is directed to [1-3] and other prior publications.  The 
focus on the fourth aspect in this paper should not be intended as a slight to the other 
three aspects: this is a brief paper and focuses narrowly on one part of the problem, but 
we mustn’t forget that it’s only one part of the problem. We need to build our AGI 
systems well, but we also need to teach them well, and it’s important to understand 
fully and deeply exactly what that means.  The research presented here has been 
conducted under the working hypothesis that, via constructing appropriately-architected 
AGI systems and then instructing them appropriately in virtual worlds, it may be 
possible to move from the current relatively primitive state of technology to an 
advanced level of AGI much more rapidly than the bulk of AI researchers believe. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Screenshots from Second Life, illustrating various behaviors of a Novamente-AI-controlled virtual 
dog.   The dog chasing a cat illustrates spontaneous behavior driven by the dog’s internal goals; the figure on 
the upper right illustrates single-avatar teaching (of soccer skills); the bottom figure illustrates two-avatar 
teaching (of frisbee skills). 

 
 

1.2. The Power of Virtual Worlds for Accelerating Progress toward Powerful AGI 

From an AI theory perspective, virtual worlds may be viewed as one possible way of 
providing AI systems with embodiment.   The issue of the necessity for embodiment in 



AI is an old one, with great AI minds falling on both sides of the debate.  The classic 
GOFAI systems (see [4] for a high-level review) are embodied only in a very limited 
sense; whereas [5] and others have argued for real-world robotic embodiment as the 
golden path to AGI.  Our own view is somewhere in the middle:  as outlined in [3] we 
suspect embodiment is very useful though probably not strictly necessary for AGI, and 
we also suspect that at the present time, it is probably more generally worthwhile for AI 
researchers to spend their time working with virtual embodiments in digital simulation 
worlds, rather than physical robots.   

The notion of virtually embodied AI is nowhere near a new one, and can be traced 
back at least to Winograd’s (1972) classic SHRDLU system.  However, technology has 
advanced a long way since SHRDLU’s day, and the power of virtual embodiment to 
assist AI is far greater in these days of Second Life, Word of Warcraft, HiPiHi, 
Creatures, Club Penguin and the like.  In 2004 and 2005 we experimented with virtual 
embodiment in simple game-engine type domains, customized for AGI development 
(see Figure 3), which has advantages in terms of the controllability of the environment; 
but we are now leaning toward the conclusion that the greater advantage is to be had by 
making use of the masses of potential AGI teachers present in commercial virtual 
worlds.  

Virtually embodied AGI in virtual worlds may take many different forms, for 
instance (to name just a handful of examples): 

 
• ambient wildlife 
• virtual pets  
• virtual babies for virtual-world residents to take care of, love, and teach  
• virtual shopkeepers 
• virtual job recruiters (note that dozens of real-world companies are now using 

human-controlled Second Life avatars to do job recruiting) 
• digital twins, imitating users’ avatars 
 
To concretely understand the potential power of virtual embodiment for AGI, in 

this essay we’ll focus mostly on just one possibility – the virtual-animal product 
mentioned above.  Possible follow-up products may include virtual talking parrots, and 
virtual humanoid babies – topics to be briefly discussed in the Conclusion. 

2. Creating Virtual Animals for Second Life 

 
Next we discuss some of the practical steps we are currently taking, aimed at gradually 
realizing the above-described vision.  We briefly describe the software architecture we 
have developed for controlling virtual animals in Second Life – which for the sake of 
this discussion we will call the Virtual Animal Brain (VAB).  This architecture contains 
some nontrivial AI within it, related to action selection and the overall relationship 
between goals, procedures and contexts.  However, we describe it here primarily to 
provide context for the discussion in the following two sections, which deal with the 
combined use of imitative and reinforcement learning in the context of learning 
embodied behaviors via evolutionary program learning, hillclimbing, and associative 
memory. 

The capabilities of our virtual animals, in their current form, include 



  
• Spontaneous exploration of the environment 
• Automated enactment of a set of simple predefined behaviors 
• Efficient learning of another set of predefined behaviors 
• Flexible trainability: i.e., (less efficient) learning of flexible behaviors 

invented by pet-owners on the fly 
• Communication with the animals, for training of new behaviors and a few 

additional purposes, occurs in a special subset of English here called ACL 
(Animal Command Language) 

• Individuality: each animal has its own distinct personality 
• Spontaneous learning of new behaviors, without need for explicit training 
 
Our main focus here will be on the “flexible trainability” aspect, but we will also 

touch on other aspects as appropriate.  And, though we won’t stress this point, the same 
ideas discussed here in the context of teacher-focused learning, may also be used in a 
slightly modified form to enable spontaneous learning based on embodied experience 
gathered during self-directed world-exploration. 

 
Beyond the above, some capabilities intended to be added in relatively-near-future 

VAB versions include 
 
• Recognition of novel categories of objects, and integration of object 

recognition into learning 
• Generalization based on prior learning, so as to be able to transfer old 

tricks to new contexts  
• Use of computational linguistics (integrated into the Novamente 

Cognition Engine, which as described below underlies the VAB) to achieve a 
more flexible conversational facility.  

 
These will also be briefly discussed below. 
The VAB architecture described here is not particular to Second Life, but has been 

guided somewhat by the particular limitations of Second Life.  In particular, Second 
Life does not conveniently lend itself to highly detailed perceptual and motoric 
interaction, so we have not dealt with issues related to these in the architecture to be 
described here1.   At the moment we can run our virtual animal software either in 
Second Life or in a simple Tcl/Tk testing world we have created; but with modest effort 
the VAB system could be ported to operate in essentially any virtual world or game 
world. 

                                                             
1 Although, we have dealt with some of these issues in a prior version of the architecture, which was 

connected to the AGISim framework, a wrapper for the open-source game engine CrystalSpace 



 
 

 
 

Figure 2.  Initial Virtual Animal Brain software architecture 

 
 
 
 

 
Figure 3.  Next-Phase Virtual Animal Brain software architecture (tentatively intended for 

implementation in 2008) 

 
 



2.1. Software Architecture for Virtual Animal Control 

 
Figure 2 shows the initial version of the VAB architecture, which has currently been 
implemented.  Figure 3 shows the next version of the architectre, which has been 
designed in detail and if all goes well will be implemented during 2008. 

All components of VAB but the Perceptual Pre-processor and the Global World 
Map will be specialized instances of the Novamente Cognition Engine, an existing C++ 
software system described in [1-3] which contains numerous functional components 
and has been used within two commercial applications (the Biomind ArrayGenius 
product for gene expression data analysis [7]; and the INLINK product for interactive 
natural language knowledge entry, founded on the RelEx semantic analysis engine [8]) 
and also within an R&D system that controls a humanoid agent learning simple 
behaviors in a 3D simulation world [9].  

The learning servers will be described in the following section, as learning is the 
main focus of this paper.  In the remainder of this section we will describe the other 
aspects of the architecture, which form the context in which the learning occurs. 

The Global World Map is in its initial incarnation basically a 2D navigation mesh 
for Second Life, where each point in space is labeled with information about the agents 
that reside there.  Some markup is included in the map to indicate 3-dimensional 
features of the environment.  Future versions will involve extension into a full 3D 
navigation mesh. 

 

2.2. Perception and Action 

The perceptual pre-processor is essentially a proxy that stands between SL and the rest 
of the architecture, translating the output of SL into an XML format that the VAB can 
understand. 

The current VAB system receives perceptions at a fairly high level – for instance, 
it observes a list of nearby objects, with metadata attached to them, and information 
about the spatial coordinates they occupy.  Regarding avatars, it receives information 
regarding the animations the avatars are running at a given time (a more useful list for 
some avatars than others, as in some cases avatars may run animations for which our 
AI agent doesn’t know the semantics).   Examples of the perceptions emanating from 
the Perceptual Pre-processor are things like (using a notation in which $ precedes 
variables): 

 
• I am at world-coordinates $W 
• Object with metadata $M is at world-coordinates $W 
• Part of object with metadata $M is at world-coordinates $W 
• Avatar with metadata $M is at world-coordinates $W 
• Avatar with metadata $M is carrying out animation $A 
• Statements in Petaverse, from the pet owner 
 
There is also proxy code that translates the actions and action-sequences generated 

by the VAB into instructions SL can understand (such as “launch thus-and-thus 



animation”).  Due to the particularities of Second Life2, the current VAB system carries 
out actions via executing pre-programmed high-level procedures, such as “move 
forward one step”, “bend over forward” and so forth.  Example action commands are: 

 
• Move ($d , $s) :$d is a distance, $s is a speed 
• Turn ($a, $S)  : $a is an angle , $s is a speed 
• Pitch ($a, $S) : turn vertically up/down... [for birds only] 
• Jump ($d, $h, $s)  : $h is a maximum height, at the center of the jump 
• Say ($T), $T is text : for agents with linguistic capability, which is not enabled 

in the current version 
• pick up($O) : $O is an object 
• put down($O) 
 
 

2.3. The Agent Controller 

 
Next, in the agent control software component, each virtual animal is associated with 
its own “animal brain” software object, including among other things: 

 
• An in-built (weighted) set of goals, and a set of “personality parameters” that 

guide various aspects of its behavior 
• A package of basic information 

o Location, owner, current physical form, etc. 
• A declarative memory 

o Contains e.g. associations between names of behaviors, and schemata 
(procedures) carrying out those behaviors 

• A “procedural memory” containing procedures that may be useful to enact 
• An “episodic memory” containing specific episodes the animal has been 

involved in, especially those that have led to reward from a teacher, or to 
achievement of one of the animal’s goals 

• An attention allocation process, determining which schemata the pet carries 
out at each point in time 

o This process will vary its behavior based on the pet’s “personality” as 
specified by user-supplied parameters 

• An “active procedural pool” containing procedures that are currently in the 
midst of being acted out 

 
The declarative memory stores a reasonably long record of what all the pets have 

seen and done.  Of course, when memory gets full, sufficiently old memories are saved 
to disk (or deleted, but it would be nice to have samples on disk for later mining) 

One of the aspects of the system under current active development is the Collective 
Experience Store, which contains a process that scans the experience base and extracts 
interesting “unsupervised learning problems.”  E.g. “Fred likes to feed pets.  Let’s 

                                                             
2 The current Second Life API does not provide direct access to the skeletons underlying the characters 

executed in the world. 



figure out what causes him to feed one pet but not another, and place that knowledge in 
the minds of those pets whose experiences are most useful in doing this figuring out.” 

 

2.4. Architecture for Real-Time Action Selection 

 
As Stan Franklin [10] has pointed out, ultimately intelligence has got to come down to 
action selection.  An intelligent agent has got to decide what actions to take at what 
points in time – this is the way it goes about achieving its goals.   In the VAB, action 
selection is controlled for each animal within the object allocated to that animal inside 
the agent control component. 

As noted above, each animal has a set of goals, which are provided in advance.  
These are fairly basic things such as: don’t be too hungry or too full, don’t be too 
thirsty or too hydrated, seek social interaction, seek novelty, seek praise.  Each of these 
goals has a certain numerical weight attached to it, and the relative weighting of the 
different goals in an individual animal constitutes an important part of that animal’s 
“personality.” 

Each animal’s brain also contains a declarative knowledge base, containing 
information the animal has learned during its lifetime – who is its owner, if it has an 
owner; where it has found various items at various points of time in the past; who has 
been friendly versus evil to it; and so forth.  The declarative knowledge base is an 
AtomTable, to use NCE lingo; it contains weighted, typed nodes and links in the 
manner typically used within the Novamente Cognition Engine. 

And each animal’s brain also contains a procedural knowledge base, consisting of 
the set of  behavior-generating procedures the animal has found useful in various 
contexts in the past.  The declarative knowledge base contains relationships, in NCE 
node-and-link format, expressing the content 

 

Procedure P, in context C has led to the achievement of goal G 

 
and associated with appropriate weightings including probabilistic truth values.  For 
example, in the mind of an animal serving as a pet, there might be a link 

 
 
 
 
 
 
 
 
 
 

Implication <[.8,.95],.95> 

 AND 



  Inheritance current_smell food 

  Evaluation current_location my_home 

  Execution goto my_food_bowl 

  Evaluation am_hungry    
   

 maintain_appropriate_fullness 

 

expressing the fact that if the animal is hungry, and smells food, and is at home, then 
going to its food bowl may be a way of achieving its goal of maintaining appropriate 
fullness (not being too full or too hungry).   In this example the actual procedure 
involved is a very simple one, simply the “goto” procedure that heads toward an object.  
(The <[.8,.95],.95> is an uncertain truth value, representing in the NCE’s “indefinite 
probability” format, see [11]).  In general, the calculation of such truth values is not a 
difficult matter; the hard part is identifying what are the right contexts to use in 
conjunction with each procedure and each goal.  In most cases, though, it turns out that 
the right contexts for virtual animals are relatively simple ones; this will obviously be 
more of a problem when one turns to applying a similar approach to virtual humanoid 
agents or other agents with more complex lives. 

How does action selection work, then?  Each procedure in the animal’s mind is 
assigned an importance level, at each point in time, based on the degree to which it’s 
estimated to imply the currently important goals given the currently relevant context.  
And note that the context here includes the other procedures that are executing at that 
point in time. Some procedures may take a while to execute – so the animal’s brain 
must also maintain a list of the procedures that are currently in the middle of running.  
Then, a procedure is selected for execution, with the probability of its selection being 
proportional to its urgency.   

 

2.4.1. Future Developments in Action Selection 

 
Eventually, to make highly intelligent virtual agents, it will be necessary to do 
advanced probabilistic logical inference (as carried out e.g. by the NCE’s PLN 
inference engine) on the fly in the course of action selection, in order to calculate 
importances based on the current context in a sufficiently flexible way.  From the point 
of view of a highly intelligent agent, each context is unique, and its relevant 
relationships to prior contexts must be assessed via a unique chain of reasoning.  But 
from the point of view of controlling virtual animals, it seems acceptable to ignore 
these subtleties and make use of a fixed set of primitive contexts, allowing the system 
to look at combinations of contexts in this fixed set but not to interpret procedures more 
broadly in the context of more general, creatively-created contexts.  The primitive 
contexts the current virtual animals can use include: 

 



• physiological sensations such as am_hungry, am_tired, am_thirsty, etc. 
• familiar locations such as am_home, am_outside, am_near_water, 

am_in_structure_with_ID_n 
• social situations like alone_with_owner, near_friends, near_enemies, etc. 
• indications of which current procedures are active 
 
Combinations of these yield a variety of different contexts in which the utility of 

various procedures at leading to various goals can be assessed. 
Another aspect of action selection not yet taken into account in our virtual animals 

is subgoaling.  Right now they try to learn how to achieve their built-in goals, which 
may be weighted differently for 
different animals based on personality.   A more highly intelligent version of the system 
would use inference to create new goals serving as subgoals to the built-in goals, and 
then strive to achieve these subgoals as well.  This leads to the necessity for a more 
complex system combining attention allocation and goals, as contained in the NCE 
design (and described in moderate detail in [1]). 

 

2.5. Aspects of the VAB Architecture Scheduled for Future Implementation 

 
Figure 3 shows some additional components intended for addition to the VAB, but not 
yet in place in the operational software.    

One functionality we would like to add in future is object recognition – by which 
we refer to the capability of a pet to look at an object in the SL world and determine 
what kind of object it is (a vehicle, a car, a truck, a hat, a shirt, a vest, etc.).   This may 
be achieved via deployment of the MOSES algorithm as a supervised categorization 
engine.  This is actually a simpler use of MOSES than the “behavior learning” use that 
lies at the center of the current VAB version, but has deferred for logistic reasons, and 
to to reduce the complexity of the initial VAB.  For the first version of the VAB, object 
recognition occurs only insofar as objects are labeled with appropriate metadata 
indicating their type. 

Next, we would like to incorporate the full power of the NCE’s Probabilistic Logic 
Networks reasoning engine [11] into the VAB, so as to enable more effective 
generalization within the Collective Experience Store.  The current VAB utilizes some 
PLN inference rules within a simple control scheme, but this is not nearly as powerful 
as enabling general PLN backward and forward chaining inference on the animals’ 
collective memory store.  Ultimately, in fact, we would like to incorporate PLN into the 
real-time agent controller component of the sysetm as well, so as to enable more 
intelligent and contextually appropriate action selection; but this is a bigger job than 
incorporating PLN into the CES, because it requires real-time control of advanced PLN 
inference. 

Finally, even though in general real non-human animals don’t understand very 
much natural language, nevertheless it will be of considerable value to integrate a more 
robust NLP capability into the VUB in a later version.  This is because the existing 
version of the Animal Command Language, while quite powerful in its capabilities, is 
still very brittle compared to natural languages.  Users will need to phrase things in the 
exact right way or the animals won’t understand them.  This brittleness can be 
mitigated somewhat by coding synonyms and alternate syntactic patterns into the 



system, but ultimately the only way to make the ACL easily usable by naive end-users 
is to incorporate some basic NLP parsing and semantic analysis.  Of course, this also 
constitutes a step toward creating more linguistically ambitious animals as mentioned 
above, such as parrots that talk; and also toward creating humanoid avatars that 
communicate in English with a level of grounded understanding, rather than in the 
manner of chat-bots. 

3.  IRC Learning in the Virtual Animal Brain 

Perhaps the best way to introduce the essential nature of the IRC teaching protocol is to 
give a brief snippet from a script that was created to guide the actual training of our 
Second Life virtual animals.   This snippet involves only I and R; the C will be 
discussed afterwards. 

This snippet demonstrates a teaching methodology that involves two avatars: Bob 
who is being the teacher, and Jill who is being an “imitation animal,” showing the 
animal what to do by example. 

 
1. Bob wants to teach the dog Fido a trick.  He calls his friend Jill over.  

"Jill, can you help me teach Fido a trick?" 
2. Jill comes over.  "How much will you pay me for it? 
3. Bob gives her a kiss. 
4. "All right," says Jill, "what do you want to teach him?" 
5. "Let's start with fetching stuff," replies Bob. 
6. So Bob and Jill start teaching Fido to fetch using the Pet language.... 
7. Bob says: "Fido, I’m going to teach you to play fetch with Jill." 
8. Fido sits attentively, looking at Bob. 
9. Bob says: "OK, I’m playing fetch now." 
10. Bob picks up a stick from the ground and throws it.  Jill runs to get the 

stick and brings it back to Bob. 
11. Bob says: "I'm done fetching.   
12. Bob says, “You try it." 
13. Bob throws a stick.  Fido runs to the stick, gets it, and brings it back. 
14. Bob says "Good dog!" 
15. Fido looks happy. 
16. Bob says: “Ok, we’re done with that game of fetch.  
17. Bob says, “Now, let’s try playing fetch again." 
18. This time, Bob throws a stick in a different direction, where there's 

already a stick lying on the ground (call the other stick Stick 2). 
19. Fido runs and retrieves Stick 2.  As soon as he picks it up, Bob says "No."  

But Fido keeps on running and brings the stick back to Bob. 
20. Bob says "No, that was wrong.  That was the wrong stick.  Stop trying!" 
21. Jill says, "Furry little moron!" 
22. Bob says to Jill, "Have some patience, will you?  Let's try again." 
23. Fido is slowly wandering around, sniffing the ground. 
24. Bob says "Fido, stay."  Fido returns near Bob and sits. 
25. Bob throws Stick 2.  Fido starts to get up and Bob repeats "Fido, stay." 
26. Bob goes and picks up Stick 1, and walks back to his original position. 
27. Bob says "Fido, I'm playing fetch with Jill again." 



28. Bob throws the first stick in the direction of stick 2.  
29. Jill goes and gets stick 1 and brings it back to Bob. 
30. Bob says "I'm done playing fetch with Jill." 
31. Bob says "Try playing fetch with me now."  He throws stick 1 in another 

direction, where stick 3 and stick 4 are lying on the ground, along with some 
other junk. 

32. Fido runs and gets stick 1 and brings it back. 
33. Bob and Jill both jump up and down smiling and say "Good dog!  Good 

dog, Fido!!  Good dog!!" 
34. Fido smiles and jumps up and licks Jill on the face. 
35. Bob says, "Fido, we’re done practicing fetch." 
 
 
The text directed by Bob to Fido is in a limited dialect of English we call the ACL 

or Animal Command Language (which takes several different forms with varying 
levels of linguistic sophistication, but this point can be bypassed here, as the focus of 
this paper is not computational linguistics).  Line 7 initiates a formal  training session, 
and Line 33 terminates this session.   The training session is broken into “exemplar” 
intervals during which exemplars are being given, and “trial” intervals during which the 
animal is trying to imitate the exemplars, following which is receives reinforcement on 
its success or otherwise.   For instance line 9 initiates the presentation of an exemplar 
interval, and line 11 indicates the termination of this interval.  Line 12 indicates the 
beginning of a trial interval, and line 16 indicates the termination of this interval. 

The above example of combined imitative/reinforcement learning involves two 
teachers, but, this is of course not the only way things can be done.  Jill could be 
eliminated from the above teaching example.  The result of this would be that, in 
figuring out how to imitate the exemplars, Fido would have to figure out which of 
Bob’s actions were “teacher” actions and which were “simulated student” actions.  This 
is not a particularly hard problem, but it’s harder than the case where Jill carries out all 
the simulated-student actions.  So in the case of teaching fetch with only one teacher 
avatar, on average, more reinforcement trials will be required. 

 

3.1. Corrective Learning 

 
Another interesting twist on the imitative/reinforcement teaching methodology 
described above is the use of explicit correctional instructions from the teacher to the 
animal.   This is not shown in the above example but represents an important addition 
to the methodology show there.  One good example of the use of corrections would be 
the problem of teaching would be teaching an animal to sit and wait until the teacher 
says "Get Up,” using only a single teacher.  Obviously, using two teachers, this is a 
much easier problem.  Using only one teacher, it’s still easy, but involves a little more 
subtlety, and becomes much more tractable when corrections are allowed. 

One way that human dog owners teach their dogs this sort of behavior is as 
follows: 

 
• Tell the dog "sit" 
• tell the dog "stay" 



• Whenever the dog tries to get up, tell him "no" or "sit", and then he sits 
down again 

• eventually, tell the dog to "get up" 
 
The real dog understands, in its own way, that the "no" and "sit" commands said 

after the "stay" command are meta-commands rather than part of the "stay" behavior. 
In our virtual-pet case, this would be more like 
 
• tell the dog "I'm teaching you to stay" 
• Tell the dog "sit" 
• Whenever the dog tries to get up, tell him "no" or "sit", and then he sits 

down again 
• eventually, tell the dog to "get up" 
• tell the dog "I'm done teaching you to stay" 
 
The easy way to do this is to give the Animal Command Language an explicit 

META flag.  In this case, the teaching would look like 
 
• tell the dog "I'm teaching you to stay" 
• Tell the dog "META: sit" 
• Whenever the dog tries to get up, tell him "META: no" or "META:sit", 

and then he sits down again 
• eventually, tell the dog to "get up" 
• tell the dog "I'm done teaching you to stay"--  
 
Even without the META tag, this behavior is learnable via our learning algorithms 

within a modest number of reinforcement trials.  But this well illustrates the give-and-
take relationship between the sophistication of the teaching methodology and the 
number of reinforcement trials required.  In many cases, the best way to reduce the 
number of reinforcement trials required to learn a behavior is not to increase the 
sophistication of the learning algorithm, but rather to increase the information provided 
during the instruction process.  No matter how advanced the learning algorithm, if the 
teaching methodology only gives a small amount of information, it’s going to take a 
bunch of reinforcement trials to go through the search space and find one of the right 
procedures satisfying the teacher’s desires.   One of the differences between the real-
world learning that an animal or human child (or adult) experiences, and the learning  
“experienced” by standard machine-learning algorithms, is the richness and diversity of 
information that the real world teaching environment provides, beyond simple 
reinforcement signals.  Virtual worlds provide a natural venue in which to experiment 
with providing this sort of richer feedback to AI learning systems, which is one among 
the many reasons why we feel that virtual worlds are an excellent venue for 
experimentation with and education of early-stage AGI systems. 



 

4.  The Cognitive Infrastructure Supporting IRC Learning in the Virtual Animal 
Brain 

We now turn to the two pools of “learning servers” described in the above architecture 
diagram.   These architectural components exist to carry out supervised or unsupervised 
learning, in order to learn new procedures for governing agent behavior, which may 
then be placed in the Agent Control Server Pool and associated there with the proper 
animal or set of animals.  They constitute a specific cognitive infrastructure 
implementing the IRC learning methodology in the virtual-animal context, with some 
extensibility beyond this context as well. 

In the VAB, we have chosen to deploy two different learning algorithms, with 
different strengths and weaknesses.  We have implemented a variety of hillclimbing, 
which is a fast learning algorithm but may fail on harder problems (in the sense of 
requiring an unacceptably large number of reinforcement trials).  And we are currently 
in the midst of integrating MOSES, a sophisticated probabilistic evolutionary learning 
algorithm [12], as an alternative.  Compared to hillclimbing, MOSES is much smarter 
but slower, and may take a few minutes to solve a problem.  The two algorithms (as 
implemented for the VAB) share the same knowledge representation (a certain kind of 
C++ “program tree” used for representing procedures) and some other software 
components (e.g. normalization rules for placing procedures in an appropriate 
hierarchical normal form, as described in [12]). 

The big challenge involved in designing the VAB system, AI-wise, is that these 
learning algorithms, used in a straightforward way with feedback from a human-
controlled avatar as the fitness function, would  need an excessive number of 
reinforcement trials to learn relatively simple behaviors.  This would bore the human 
beings involved with teaching the animals.  This is not a flaw of the particular learning 
algorithms being proposed, but is a generic problem that would exist with any AI 
algorithms.  To choose an appropriate behavior out of the space of all possible 
behaviors satisfying reasonable constraints, requires more bits of information that is 
contained in a handful of reinforcement trials. 

Most “animal training” games (e.g. Nintendogs may be considered as a reference 
case) work around this “hard problem” by not allowing teaching of novel behaviors.  
Instead, a behavior list is made up front by the game designers.  The animals have 
preprogrammed procedures for carrying out the behaviors on the list.  As training 
proceeds they make fewer errors, till after enough training they converge 
“miraculously” on the pre-programmed plan 

This approach only works, however, if all the behaviors the animals will ever learn 
have been planned and scripted in advance. 

The first key to making learning of non-pre-programmed behaviors work, without 
an excessive number of reinforcement trials, is in “fitness estimation” -- code that 
guesses the fitness of a candidate procedure at fulfilling the teacher’s definition of a 
certain behavior, without actually having to try out the procedure and see how it works.  
This is where the I part of IRC learning comes in. 

At an early stage in designing the VAB application, we realized it would be best if 
the animals were instructed via a methodology where the same behaviors are defined 
by the teacher both by demonstration and by reinforcement signals.  The ACL language 



described above is designed to encourage this. Learning based on reinforcement signals 
only can also be handled, but learning will be slower. 

In evolutionary programming lingo, we have 
 
• Procedures = genotypes 
• Demonstrated exemplars, and behaviors generated via procedures = 

phenotypes 
• Reinforcement signals from pet owner = fitness 
 
One method of imitation-based fitness estimation used in the VAB involves an 

internal simulation world called Third Life (TL).  TL can be visualized using a simple 
testing UI, but in the normal course of operations it doesn’t require a user interface; it is 
an internal simulation world, which allows the VAB to experiment and see what a 
certain procedure would be likely to do if enacted in the SL virtual world.  Of course, 
the accuracy of this kind of simulation depends on the nature of the procedure.  For 
procedures that solely involve moving around and interacting with inanimate objects, it 
can be very effective.  For procedures involving interaction with human-controlled 
avatars, other animals, or other complex objects, it may be unreliable – and making it 
even moderately reliable would require 
significant work that has not yet been done, in terms of endowing TL with realistic 
simulations of other agents and their internal motivational structures and so forth.  
Ultimately, for TL to work well would require an agent with a sophisticated Theory of 
Mind in the developmental-psychology sense (see [13] for a treatment of Piagetan 
developmental psychology in an AGI context).  But short of this, TL has nonetheless 
proved useful for estimating the fitness of simple behavioral procedures. 

When a procedure is enacted in TL, this produces an object called a “behavior 
description” (BD), which is represented in the NCE’s generic Atomspace (weighted 
labeled hypergraph) knowledge representation format.  The BD generated by the 
procedure is then compared with the BD’s corresponding to the “exemplar” behaviors 
that the teacher has generated, and that the student is trying to emulate.  Similarities are 
calculated, which is a fairly subtle matter that involves some heuristic inferences.  An 
estimate of the likelihood that the procedure, if executed in SL, will generate a behavior 
adequately similar to the exemplar behaviors. 

Furthermore, this process of estimation may be extended to make use of the 
animal’s long-term memory as collected in the CES component.   Suppose a procedure 
P is being evaluated in the context of exemplar-set E.  Then 

 
• The experience base is mined for pairs (P’, E’) that are similar to (P,E) 
• The fitness of these pairs (P’, E’) is gathered from the experience base 
• An estimate of the fitness of (P,E) is then formed 
 
Of course, if a behavior description corresponding to P has been generated via TL, 

this may also be used in the stimilarity matching against long-term memory.  The tricky 
part here, of course, is the similarity measurement itself, which can be handled via 
simple heuristics, but if taken sufficiently seriously becomes a complex problem of 
uncertain inference. 

One thing to note here is that, although learning is done by each animal 
individually, this learning is subtly guided by collective knowledge within the fitness 
estimation process.  Internally, we have a “borg mind” with multiple animal bodies, 



and an architecture designed to ensure the maintenance of unique personalities on the 
part of the individual animals in spite of the collective knowledge and learning 
underneath. 

At time of writing, we have just begun to experiment with the learning system as 
described above, and are using it to learn simple behaviors such as playing fetch, basic 
soccer skills, doing specific dances as demonstrated by the teacher, and so forth.  We 
have not yet done enough experimentation to get a solid feel for the limitations of the 
methodology as currently implemented. 

Note also that, going forwards, there is a possibility to use NCE’s PLN inference 
component to allow generalization of learned behaviors.  For instance, with inference 
deployed appropriately, a pet that had learned how to play tag would afterwards have a 
relatively easy time learning to play “freeze tag.”  A pet that had learned how to hunt 
for Easter eggs would have a relatively easy time learning to play hide-and-seek.  Now, 
even the initial VAB will have some level of generalization ability in place, due to the 
use of the Collective Experience Store for fitness estimation.  However, explicit use of 
inference, as is intended for later versions, will allow much more rapid and far-reaching 
inference capabilities. 

 

4.1. Introducing Corrective Learning 

 
Finally, how may corrections be utilized in the learning process we have described?   
Obviously, the corrected behavior description gets added into the knowledge base as an 
additional exemplar.  And, the fact of the correction acts as a partial reinforcement (up 
until the time of the correction, what the animal was doing was correct).  But beyond 
this, what’s necessary is to propagate the correction backward from the BD level to the 
procedure level. For instance, if the animal is supposed to be staying in one place, and 
it starts to get up but is corrected by the teacher (who says “sit” or physically pushes the 
animal back down), then the part of the behavior-generating procedure that directly 
generated the “sit” command needs to be “punished.”   How difficult this is to do, 
depends on how complex the procedure is.  It may be as simple as providing a negative 
reinforcement to a specific “program tree node” within the procedure, thus 
disincentivizing future procedures generated by the procedure learning algorithm from 
containing this node.  Or it may be more complex, requiring the solution of an 
inference problem of the form “Find a procedure P’ that is as similar as possible to 
procedure P, but that does not generate 
the corrected behavior, but rather generates the behavior that the teacher wanted 
instead.”  This sort of “working backwards from the behavior description to the 
procedure” is never going to be perfect except in extremely simple cases, but it is an 
important part of learning.  We have not yet experimented with this extensively in our 
virtual animals, but plan to do so as the project proceeds. 

There is also an interesting variant of correction in which the agent’s own memory 
serves implicitly as the teacher.   That is, if a procedure generates a behavior that seems 
wrong based on the history of successful behavior descriptions for similar exemplars, 
then the system may suppress that particular behavior or replace it with another one 
that seems more appropriate – inference based on history thus serving the role of a 
correcting teacher. 



4.2. Applying A Similar IRC Methodology to Spontaneous Learning 

We have described the IRC teaching/learning methodology in the context of learning 
from a teacher – but in fact a similar approach can be utilized for purely unsupervised 
learning.  In that case, the animal’s intrinsic goal system acts implicitly as a teacher.  
Experimentation with this sort of learning is on our list of  virtual-animal R&D goals 
for 2008. 

For instance, suppose the animal wants to learn how to better get itself fed.  In this 
case,  

 
• Exemplars are provided by instances in the animal’s history when it has 

successfully gotten itself fed 
• Reinforcement is provided by, when it is executing a certain procedure, 

whether or not it actually gets itself fed or not 
• Correction as such doesn’t apply, but implicit correction may be used via 

deploying history-based inference.  If a procedure generates a behavior that 
seems wrong based on the history of successful behavior descriptions for the 
goal of getting fed, then the system may suppress that particular behavior. 

 
The only real added complexity here lies in identifying the exemplars.   

In surveying its own history, the animal must look at each previous instance in which it 
got fed (or sme sample thereof), and for each one recollect the series of N actions that it 
carried out prior to getting fed.  It then must figure out how to set N – i.e. which of the 
actions prior to getting fed were part of the behavior that led up to getting fed, and 
which were just other things the animal happened to be doing a while before getting 
fed.  To the extent that this exemplar mining problem can be solved adequately, innate-
goal-directed spontaneous learning becomes closely analogous to teacher-driven 
learning as we’ve described it.  Or in other words: Experience, as is well known, can 
serve as a very effective teacher. 

 

5. Conclusion and Next Steps 

We have described some recent work involving the use of the IRC teaching/learning 
methodology to instruct virtual animals in Second Life.  This constitutes a significant 
step beyond what is commonly done in virtual worlds and games regarding virtual-
animal instruction; and a significant conceptual step beyond the pure reinforcement 
learning methodology that is commonly studied in the AI field.  We have conducted 
some simple experiments using the IRC methodology in our Virtual Animal Brain 
already, but we still have a lot to learn about the best ways to pragmatically combine 
reinforcement, imitative and corrective learning in a virtual-world context.  Along these 
lines, we have formulated a detailed roadmap for further research and development in 
the domain of virtual animal instruction.  This includes a number of items mentioned 
above: object recognition, extension of the integrative methodology described above to 
spontaneous learning, and further integration of PLN inference to allow more 
sophisticated history-based fitness estimation and context-based action selection.  
However, in this Conclusion, rather than reviewing this short-to-medium-term roadmap 
in more depth, we will take the opportunity to step back a bit and review the 



connections between this virtual-animal work and the larger AGI project of which it 
forms a component, and describe some of our medium-to-long-term plans for using 
IRC to enable a transition beyond nonlinguistic virtual animals. 

At the start of the paper we noted four critical aspects to AGI: knowledge 
representation, learning, cognitive architecture and teaching methodology.  Our main 
theme here has been teaching methodology, but we have ventured into the other three 
categories considerably as well, as necessary to describe the implementation and 
significance of the teaching methodology presented.  The architecture, 
representations,  and learning algorithms described here constitute a fairly small subset 
of the ones currently embodied in the overall NCE codebase, and the teaching 
methodology presented here is correspondingly somewhat limited.  But the ideas given 
here have been presented, not only for their innate interest, but as initial concretizations 
of a larger vision which as yet exists mainly in the form of software designs, theoretical 
analyses and limited-scale software prototypes, but which we are doing our best to 
move toward practical realization.  

In the remainder of this Conclusion, we will outline some of the steps by which we 
feel  the (admittedly substantial) gap between simple virtual animals and human-level 
AGI may be filled: a path that leads from nonlinguistic virtual-animal learning system, 
to parrots that talk, to virtual babies that mature, and ultimately to adult virtual 
humanoid agents that communicate gesturally, pragmatically and linguistically in a 
manner grounded in their virtual-world social, perceptual, motoric and cognitive 
experiences.   Obviously, there are many challenges to be faced along this path, but we 
believe that it is a considerably more viable pragmatic route to powerful AGI than any 
other that is currently available. 

The main theme we wish to focus on in discussing the path forward is language 
learning.  We have argued above that the combination of reinforcement, imitation and 
correction is a complete teaching methodology for cases where there is no linguistic 
communication between teacher and agent.  It is obvious that the potential for high-
bandwidth instruction is far greater if one introduces the possibility for linguistic 
communication.  However, the current state of the art in computational linguistics does 
not support robust, intelligent automated communication.  Rather, the best current 
system for automated dialogue are depressingly similar in character to ELIZA and 
other simplistic chat bots from decades ago.  There has been tremendous progress in 
information retrieval, semantic relationship extraction and other areas [14], but this has 
not translated very effectively into progress in automated dialogue.  The reason for this, 
we suggest, is that realistic dialogue is highly centered on experiential grounding.  
Carrying out dialogue requires a system to understand the contextual meanings of the 
linguistic terms it is using.  Perhaps the hand-coded and statistical rules used in current 
NLP systems will turn out to be useful for an AGI system; but if so, it will be via 
embedding them in a framework that allows them to be adaptively deployed based on 
context.  And this requires experiential language learning.  We suggest that the IRC 
framework described here, as deployed in virtual worlds like Second Life, provides an 
ideal platform for experiential language learning. 

Along these lines, part of our tentative plan for future R&D is to integrate, into our 
current virtual animal infrastructure, an improved version of the language engine called 
RelEx briefly described in [8].  Of course a virtual animal with a language engine could 
be concretized many different ways but – inspired in part by Irene Pepperberg’s [15] 
groundbreaking work teaching an actual parrot complex things like grammar and 
arithmetic -- the specific scenario we’ve considered most seriously is a virtual talking 



parrot.  Potentially, this may provide a means to facilitate robust language learning on 
the part of virtually embodied agents, and lead to an experientially-trained AGI 
language facility that can then be used to power other sorts of agents such as virtual 
babies, and ultimately virtual adult-human avatars that can communicate with 
experientially-grounded savvy rather than in the manner of chat-bots. 

Imagine millions of talking parrots spread across different online virtual worlds — 
all communicating in simple English. Each parrot has its own local memories, its own 
individual knowledge and habits and likes and dislikes — but there’s also a common 
knowledge-base underlying all the parrots, which includes a common knowledge of 
English. 

Next, suppose that an adaptive language learning algorithm is set up (using for 
instance the MOSES and PLN algorithms embedded in the Novamente Cognition 
Engine), so that the parrot-collective may continually improve its language 
understanding based on interactions with users according to the IRC methodology. If 
things go well, then the parrots will get smarter and smarter at using language, as time 
goes on – and will eventually, of course, graduate to a combination of IRC and 
linguistic learning. 

Along related lines, Michael Tomasello [16], in his excellent book Constructing a 
Language, has given a very clear summary of the value of social interaction and 
embodiment for language learning in human children.  And while he doesn’t phrase it 
in these terms, the picture he portrays includes central roles for reinforcement, imitative 
and corrective learning.  Imitative learning is obvious: so much of embodied language 
learning has to do with the learner copying what it has heard other say in similar 
contexts.  Corrective learning occurs every time a parent rephrases something for a 
child.  And for a virtual parrot, the test of whether it has used English correctly, in a 
given instance, will come down to whether its human friends have rewarded it, and 
whether it has gotten what it wanted. If a parrot asks for food incoherently, it’s less 
likely to get food — and since the virtual parrots 
will be programmed to want food, they will have motivation to learn to speak correctly. 
If a parrot interprets a human-controlled avatar’s request “Fetch my hat please” 
incorrectly, then it won’t get positive feedback from the avatar — and it will be 
programmed to want positive feedback.   

The intersection between linguistic experience and embodied perceptual/active 
experience is one thing that makes the notion of a virtual talking parrot very 
fundamentally different from the “chatbots” on the Internet today.  The other major 
difference, of course, is the presence of learning – chatbots as they currently exist rely 
almost entirely on hard-coded lists of expert rules.  But the interest of many humans in 
interacting with chatbots suggests that virtual talking parrots or similar devices would 
be likely to meet with a large and enthusiastic audience. 

Yes, humans interacting with parrots in virtual worlds can be expected to try to 
teach the parrots ridiculous things, obscene things, and so forth. But still, when it 
comes down to it, even pranksters and jokesters will have more fun with a parrot that 
can communicate better, and will prefer a parrot whose statements are comprehensible. 

And of course parrots are not the end of the story. Once the collective wisdom of 
throngs of human teachers has induced powerful language understanding in the 
collective bird-brain, this language understanding (and the commonsense understanding 
coming along with it) will be useful for many, many other purposes as well.  Humanoid 
avatars — both human-baby avatars that may serve as more rewarding virtual 
companions than parrots or other virtual animals; and language-savvy human-adult 



avatars serving various useful and entertaining functions in online virtual worlds and 
games. Once AI’s have learned enough that they can flexibly and adaptively explore 
online virtual worlds and gather information from human-controlled avatars according 
to their own goals using their linguistic facilities, it’s easy to envision dramatic 
acceleration in their growth and understanding.  

A baby AI has numerous disadvantages compared to a baby human being: it lacks 
the intricate set of inductive biases built into the human brain, and it also lacks a set of 
teachers with a similar form and psyche to it … and for that matter, it lacks a really rich 
body and world.  However, the presence of thousands to millions of teachers constitutes 
a large advantage for the AI over human babies. And a flexible AGI framework will be 
able to effectively exploit this advantage.  If nonlinguistic learning mechanisms like the 
ones we’ve described here, utilized in a virtually-embodied context, can go beyond 
enabling interestingly trainable virtual animals and catalyze the process of language 
learning – then, within a few years time, we may find ourselves significantly further 
along the path to AGI than most observers of the field currently expect. 
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