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Abstract 
A conceptual architecture is presented in which a 
population of learning agents share a dynamic 
collective knowledge base but also retain individual 
memories, biases and learning systems. Knowledge 
learned by agents goes into the collective base, but 
each agent also has a “personality filter” that controls 
how the collective base affects its individual base. An 
application in virtual worlds is discussed, in which 
behaviors are taught by users to virtual dogs and the 
shared knowledge is used to speed up learning. 
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Introduction 
In the real world, different organisms can share their 
knowledge and learning with each other only via low-
bandwidth mechanisms like imitation and linguistic 
communication.  Artificial agents are in a different 
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situation, as knowledge can be extracted from one 
agent’s knowledge base (KB) and shared with others. 
Knowledge sharing has been used to transfer learned 
behavior from virtual agents to robots [6], and to 
coordinate simultaneous learning by agent groups [1]. 

One could create a population of knowledge-sharing 
agents that operate as a sort of “borg mind,” with 
intelligence beyond what any of the agents could 
achieve with its own resources, with each giving 
contextually appropriate expression to the same 
knowledge and intelligence.  However, in some cases 
preserving a significant degree of separation between 
the KBs of different agents may actually be optimal in 
terms of advancing the total intelligence of the 
population; this is similar to the reasons why in 
evolutionary learning one sometimes uses an “islands 
model” [5] consisting of a set of separately evolving 
subpopulations with limited interaction, rather than one 
big population.  In many practical applications what the 
end users of virtual agents want is also an agent with 
its own strengths and weaknesses, and its own learning 
process that the agent’s owner gets to participate in. 

In this paper we explore these issues in a generally 
applicable way, but focus on the example of virtual 
pets.  We present a conceptual system architecture 
involving a group of virtual agents, each possessing 
their own individual KB and learning processes, hooked 
up to a group knowledge store that one might 
whimsically call, in the pet application, a “Collective Pet 
Unconscious.” This centralized KB may be associated 
with its own learning processes.  However, its impact 
on the individual agents must be carefully controlled, 
and hence in our architecture each agent is supplied 
with a “personality filter” component that determines 

which knowledge from the group mind enters the 
individual mind. The filter allows the balance between 
rapidity of learning and distinctiveness of the agent to 
be configured based on the goals of the designers of 
the agent and the virtual world in which it is embedded. 

A Conceptual System Architecture for 
Balancing Collective Intelligence and 
Individuality 
The conceptual system architecture we describe here 
has currently been implemented in the context of 
virtual pets interacting in a dog park, but has much 
more general applications. Generally conceived it 
comprises a population of virtually embodied agents, 
embodied in the same world(s), where each agent 
possesses an individual knowledge store; a learning 
unit; a personality model that distinguishes it from 
other agents; and a personality filter. Additionally, 
there are software objects corresponding to a “coherent 
group” of different agents (possibly all the agents in the 
population, or possibly a subset thereof). The agent 
groups also have their own knowledge store (the 
centralized KB) and learning unit. 

In our current application of the architecture, the 
agents reside in a virtual, controlled by the Novamente 
Cognition Engine (NCE), an integrative AI system 
[2].The NCE contains a single KB, as well as specific 
knowledge objects for agents and agent-groups. Thus, 
each agent's KB is a subset of the collective KB. A set 
of processes act periodically on each agent's knowledge 
store, including the personality filtering process. 

The same architecture applies beyond the domain of 
virtual worlds.  One could use it to control physical 
robots that connect wirelessly to a centralized KB.  It 



  

also applies to agents that lack “bodies” in the 
traditional sense, such as search agents that navigate a 
large textual or relational knowledge base, each using 
their own particular biases to guide their search.  

Figure 1.  A Conceptual System Architecture for Balancing 
Collective Intelligence and Individuality 

Figure 1 gives a simple graphical depiction of the 
architecture. In the figure, (1) represents the world, in 
which computer-controlled simulated agents (2) are 
situated, along with similar agents controlled by 
humans.  The agents (2) are collectively controlled by 
agent controller software (3), which internally consists 
of a number of components (4-8). Each agent has its 
own agent controller (4), which contains a memory   
and learning unit (5) and a personality model (6).  
There is also an agent group controller (7) that controls 
the population, and stores the collective KB. The 
personality filter component (8) controls which of the 
collective knowledge in (7) is imported by individual 
agent controllers (4), based potentially on multiple 
constraints, but including the constraint that each 
individual agent (2) must continue to display its own 

individual personality even after absorbing appropriate 
items of collective knowledge from (7). 

Toward a Collective Pet Unconscious 
The above architecture is quite general, but we have 
initially explored it in a very specific context: the 
Novamente Pet Brain architecture [3-4], which uses a 
simplified version of the NCE to control virtual dogs 
embodied in online virtual worlds. Figure 2 is a 
screenshot of two Pet Brain controlled pets in 
Multiverse, together with an indicator pane showing the 
emotional and physiological status of one of the pets. 
While they have separate bodies, their minds are stored 
in the same Pet Brain software system on the same 
server, and hence may share knowledge as much as 
the system's configuration allows them to. They can be 
taught new tricks and behaviors through an 
imitation/reinforcement learning process. 

To illustrate “personality filtering” in the Pet Brain, 
suppose that Jane teaches her pet Fido to sit on 
command, and it takes her 5 trials to do it. Once this 
behavior is taught, it goes into Fido’s memory, and also 
into the collective memory.  Afterwards, suppose that 
Jack wants to teach his pet Princess to sit on command. 
Once Jack gives Princess one example of sitting, 
Princess could use the knowledge Fido put in the 
collective memory, her personality filter allowing, to 
figure out what Jack wants. Princess will use Fido's 
experience to learn much faster than Fido did.  
However, Jack will not really get the fun of watching his 
dog learn to sit. If Princess’s personality filter is set 
more restrictively, then she may not access Fido’s 
knowledge about sitting at all, or she may use it only 
weakly, to bias her learning rather than to strongly 
guide it, in which case it might take her 3 trials to learn 



  

to sit, instead of the 1 that would come from a pure 
“borg mind” strategy, or the 5 that would come from 
pure individuality. 

Figure 2.  Two Pet Brain controlled pets in Multiverse,  

This process works even if Jack and Jane call the same 
behavior totally different things. The collective-
memory-based matching uses the examples of sitting 
behavior that Jack and Jane have provided, not just the 
words they have associated with the behavior. 

In this scenario, collective memory is an intelligence 
advantage and the only purpose of personality filtering 
is to preserve the pleasure of pet individuality for the 
end user.  However, in the cases of more complex 
behaviors there may be an intelligence advantage in 
maintaining a significant degree of agent individuality, 
as it would allow subsequent learners more liberty to 
try variations on already learned behaviors. They may 
then discover better ways to execute those behaviors. 
In this case, it would seem appropriate for the 
personality filter to restrict collective knowledge more 
strictly.  Thus, the crafting of an application-appropriate 
personality filter may be quite subtle. 

There are many possibilities to be explored here, and 
this aspect of virtual pet psycho-engineering is at its 
very beginning.  Our goal here has been to report some 
of the simple experiments we’ve carried out so far, and 
to describe a general architecture which we believe will 
have far-reaching applications as virtual pets and 
virtually-embodied agents more generally advance. 
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