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An Inferential Dynamics Approach to Personality and 
Emotion Driven Behavior Determination for Virtual 

Animals 
Ben Goertzel and Cassio Pennachin  

Abstract.  The problem considered is how to provide virtual 
animals, living in an online virtual world, with internal 
personality and emotion structures that will lead them to display 
behaviors perceived as naturalistic and emotionally compelling 
by humans controlling avatars that interact with the virtual 
animals.  A novel approach is proposed, in which both 
spontaneous and goal-driven animal behaviors are governed by a 
set of probabilistic logic implications, which are forward and 
backward chained together, both to directly guide action 
selection, and to adjust the values of internal emotion indicators.  
The approach has been prototyped in an preliminary version of a 
system that controls virtual animals in Second Life, and is 
expected to be included in a commercial virtual-animals product 
later in 2008. 

1 INTRODUCTION 
We consider the problem of creating virtual animals, resident in 
a 3D virtual world such as Second Life, which not only learn and 
adapt their behavior based on training and experience, but also 
possess distinctive personalities and fluid emotional responses, 
sufficient to intrigue and emotionally engage the humans who 
interact with them (by means of their avatars).  The approach we 
describe here is based on a tight integration of emotion and 
personality with other aspects of “virtual animal psyche,” within 
an integrative Virtual Animal Brain (VAB) architecture.  At 
present a prototype of this architecture has been constructed and 
is the subject of testing and experimentation; the ultimate goal of 
the project within which it has been created is the launch of a 
commercial virtual animal product within Second Life and 
potentially other virtual worlds as well. 

The approach taken here is novel in several respects, most 
notably in its integration of logical and dynamical methods.  In 
the VAB, an animal’s behavior is controlled by a combination of 
procedures (represented internally in a dag form, corresponding 
to human-readable scripts in a LISP-like language), and 
probabilistic-logical implications.  There are methods for 
converting back and forth between these procedural and 
declarative representations as necessary.  Currently, learned 
behaviors such as “tricks” are represented procedurally, whereas 
relationships between personality traits, emotions and behaviors 
are represented declaratively as implications.  The learning 
aspect of the VAB has been described in detail elsewhere [1]; so 
here, after a brief review of the VAB overall, we focus on 
explicating how the system of implications is used to regulate 
emotion and behavior.  Iterated forward and backward chaining  
probabilistic inference, using these implications, play the role of 
“update equations” updating the states of internal emotional 

variables and behavioral propensities.  These equations modify 
behaviors, which in turn lead to shifts in emotional state directly, 
which affect the outputs of the implications, thus leading to an 
overall nonlinear dynamic coupling the animal’s mind with its 
behaviors. 

This approach is somewhat complex, but the end result of 
this complexity is a richness of emotion and personality driven 
behavior that seems (based on our own experimentation) to be 
more difficult to achieve with simpler and more straightforward 
approaches.  Our preliminary experimentation suggests that 
animals governed by the approach presented here may be 
interesting and appealing to interact with; but the final test, of 
course, will be after product release occurs. 

It’s worth noting that the approach is also highly 
configurable, as the basic logical implications on which it is 
based may be easily customized by nontechnical individuals.  
This gives rise to the possibility (which will likely not be 
realized in our initial product releases) that eventually end-users 
may be able to enter new implications textually or graphically, 
thus configuring the personality and emotional makeup of 
animals that serve as their pets or relate to them in other ways.   
Finally, there are ample possibilities for further extensions, such 
as using advanced probabilistic logic to learn new 
emotion/personality/behavior implications via experience, 
generalization, analogy and so forth. 

2 THE NOVAMENTE COGNITION ENGINE  
The VAB is a simplified, specialized version of a broader AI 
architecture called the Novamente Cognition Engine (NCE) 
[2,3], which is aimed beyond the domain of virtual animals, 
toward powerful artificial general intelligence [4,5].   

One may conceptualize the NCE in the context of the 
overall task of creating a powerful AGI system, which we 
decompose into four aspects (which of course are not entirely 
distinct, but still are usefully distinguished): 
 

1. Cognitive architecture (the overall design of an AGI 
system: what parts does it have, how do they connect 
to each other) 

2. Knowledge representation (how does the system 
internally store declarative, procedural and episodic 
knowledge; and how does it create its own 
representation for knowledge of these sorts in new 
domains it encounters) 

3. Learning (how does it learn new knowledge of the 
types mentioned above; and how does it learn how to 
learn, and so on) 
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4. Teaching methodology (how is it coupled with other 
systems so as to enable it to gain new knowledge about 
itself, the world and others) 

 
We now briefly review how these four aspects are handled in the 
NCE.  For a more in-depth discussion of the NCE the reader is 
referred to [2,3]. 

The NCE’s high-level cognitive architecture is motivated 
by human cognitive science and is roughly analogous to Stan 
Franklin’s LIDA architecture [6].  It consists of a division into a 
number of interconnected functional units corresponding to 
different specialized capabilities such as perception, motor 
control and language, and also an “attentional focus” unit 
corresponding to intensive integrative processing.  A 
diagrammatic depiction is given in [2]. 

Within each functional unit,  knowledge representation is 
enabled via an AtomTable software object that contains nodes 
and links (collectively called Atoms) of various types 
representing declarative, procedural and episodic knowledge 
both symbolically and subsymbolically.  Each unit also contains 
a collection of MindAgent objects implementing cognitive, 
perception or action processes that act on this AtomTable, and/or 
interact with the outside world. 

One of the most important types of Atoms is the 
PredicateNode, which represents a logical predicate evaluated on 
certain inputs.  Emotions, which will play a significant role in 
our discussion here, are represented as 0-ary predicates, which 
have a truth value at each time calculated via fixed internal code 
representing the “biological” grounding of the emotion.  
Emotion predicates may also be updated via application of 
logical rules, as will be described below.  These logical rules 
take the role of ImplicationLinks (representing probabilistic 
logical implications) joining combinations of PredicateNodes to 
each other, where combinations of PredicateNodes are 
represented in terms of AndLinks, OrLinks and NotLinks joining 
PredicateNodes. 

In addition to a number of specialized learning algorithms 
associated with particular functional units, the NCE is endowed 
with two powerful learning mechanisms embedded in 
MindAgents: the MOSES probabilistic-program-evolution 
module (based on [7]), and the Probabilistic Logic Networks 
module for probabilistic logical inference [8,9].  These are used 
both to learn procedural and declarative knowledge, and to 
regulate the attention of the MindAgents as they shift from one 
focus to another, using an economic attention-allocation 
mechanism that leads to subtle nonlinear dynamics and 
associated emergent complexity including spontaneous creative 
emergence of new concepts, plans, procedures, etc. 

Finally, regarding teaching methodology, we advocate a 
virtually-embodied approach which integrates linguistic with 
nonlinguistic instruction, and also autonomous learning via 
spontaneous exploration of the virtual world.  And this is where 
the subject of the present paper comes in: personality and 
emotion, via their impact on behavior, are key to establishing 
appropriate interactions with other agents, so as to encourage an 
embodied AI system’s ongoing learning as growth (as well as 
achieving other goals such as making the AI system more 
appealing for humans to interact with).  

3 AN ARCHITECTURE FOR INTELLIGENT 
VIRTUAL ANIMALS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Screenshot of a virtual animal in Second Life, controlled by 
the NCE-based AGI architecture described in this section. 
 
In this section we briefly describe our current, preliminary 
experimental work using a simplified version of the Novamente 
Cognition Engine (the so-called “Virtual Animal Brain” or 
VAB) to control virtual animals in the Second Life virtual world.  
Figure 1 above shows an example virtual animal controlled by 
the VAB, interacting with a human-controlled avatar in the 
context of learning to play soccer.  Figure 2 gives a high-level 
architecture diagram for the VAB, which is a simplification of 
the overall NCE architecture as diagrammed in [2]. 

The capabilities of the VAB-controlled virtual animals, in 
their current form, include 
 

• Spontaneous exploration of the environment 
• Automated enactment of a set of simple predefined 

behaviors 
• Flexible trainability: i.e., (less efficient) learning of 

behaviors invented by teachers on the fly 
• Communication with the animals, for training of new 

behaviors and a few additional purposes, occurs in a 
special subset of English called ACL (Animal 
Command Language) 

• Individuality: each animal has its own distinct 
personality 

• Spontaneous learning of new behaviors, without need 
for explicit training 

• Capabilities intended to be added in future VAB 
versions include 

• Recognition of novel categories of objects, and 
integration of object recognition into learning 

• Generalization based on prior learning, so as to be able 
to transfer old tricks to new contexts  

• Use of computational linguistics to achieve a more 
flexible conversational facility  

 
The VAB architecture is not particular to Second Life, but  

up till now has been guided somewhat by the particular 
limitations of Second Life.  In particular, Second Life does not 
conveniently lend itself to highly detailed perceptual and motoric 
interaction, so we have not dealt with issues related to these in 
the current version of the VAB.  However, we have dealt with 
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some of these issues in a prior version of the VAB, which was 
connected to the AGISim framework, a wrapper for the open-
source game engine CrystalSpace [10].   
 
 

 
 
Figure 2.  High-level diagram depicting VAB software 
architecture. The NLP, object recognition and PLN components 
are missing from the architecture that will initially be 
commercially deployed but are present in Novamente LLC’s 
internal research codebase. 
 

Instruction of VAB-controlled agents takes place according 
to a methodology we call IRC learning and is described in detail 
in [1], involving three interacting aspects: 
 

• Imitative learning: The teacher acts out a behavior, 
showing the student by example what he wants the 
student to do 

• Reinforcement learning: The student tries to do the 
behavior himself, and the teacher gives him feedback 
on how well he did 

• Corrective learning: As the student attempts the 
behavior, the teacher actively corrects (i.e. changes) 
the student’s actions, guiding him toward correct 
performance 

 
The combination of these three sorts of instruction appears 

to us critical, for learning of complex embodied behaviors and 
also, further along, for language learning.  Current 
experimentation with the IRC methodology has been interesting 
and successful, resulting in a framework allowing human-
controlled avatars to teach VAB-controlled agents a variety of 
behaviors such as fetching objects, delivering objects, going to 
desired locations, doing dances, and so forth.  Further detail is 
given in [1]; our present treatment is focused on the emotion and 
personality aspects of the system. 

. 

4 MODELING EMOTION AND 
PERSONALITY 
Psychological theories of emotion are numerous and diverse, and 
it seems likely that many of the available theories capture 

relevant aspects of the emotion phenomenon as it occurs in 
humans and other animals.  The NCE architecture itself is 
flexible enough to support a variety of approaches to AI 
emotion; a theoretical analysis of related issues is given in 
chapter [11].  For the purpose of the VAB project, however, we 
have opted for a relatively simplistic approach, drawing directly 
on the ontology of emotions supplied in [12].  Based on a deep 
and rigorous analysis of the logical structure of emotional 
experience, [12] propose an emotional ontology that is well 
summarized in Figure 3:  
 

 
 
Figure 3.  Ortony et al’s logic-based ontology of emotions [12] 
 

We have implemented this emotion theory within the VAB 
via the simple mechanism of associating a PredicateNode with 
each emotion in the ontology.  While this may seem overly 
simplistic, it’s not as bad as it initially seems.  As argued in [11], 
there is not necessarily a dichotomy between localized and 
distributed representations of knowledge.  A PredicateNode 
associated with an emotion like anger must be considered not in 
isolation, but rather as a trigger of, and indicator of, broader 
patterns of activity within the NCE’s knowledge base.   

Next, regarding animal personality, we have taken a 
pragmatic approach, including a number of personality 
parameters drawn directly from the cognitive theory of emotions 
– 

• ill-will, which determines how much resentment/ 
gloating the pet indulges in 

• morality, which determines how much pride/shame/ 
admiration/reproach the pet indulges in (this is related 
to obedience) 

• goal-orientation, which determines how much 
joy/distress the pet indulges in, i.e. how much does it 
care if it gets what it wants or not 
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• other-orientation, which determines how much the pet 
indulges in emotions related to others (e.g. happiness-
for, admiration/reproach, resentment/gloating) 

 
-- and also a number of personality parameters drawn from 
qualitative analysis of the psychology of dogs (being the animals 
we’re initially exploring): aggressiveness, curiosity, playfulness, 
friendliness, fearfulness and obedience.  There is also a 
personality parameter called “emotional expressiveness,” which 
governs how intensely an animal needs to be experiencing an 
emotion in order to express it externally. 

Each animal is assigned a number corresponding to each 
personality parameter, and the set of these numbers is a crude 
characterization of the animal’s personality.  Of course, the 
actual personality of the animal is more complex than a set of 
numbers, and consists of a set of complex emergent patterns that 
are induced by these numbers in the context of the animal’s 
cognitive structures and dynamics and the environment in which 
it is embedded. 

5  INFERENTIAL DYNAMICS FOR EMOTION 
AND PERSONALITY DRIVEN BEHAVIOR 
DETERMINATION 

Now we describe the scheme via which animal emotions 
are updated, and used to drive behavior, in the VAB architecture.  
In short, a collection of probabilistic logic implications are 
encoded relating emotional states, personality traits and 
behaviors.  Emotional state adjustment and emotion and 
personality driven behavior determination are then guided by 
chaining of these implications.  In the current, prototype version 
the implications (“rules”) have been hard-coded, but, the overall 
VAB architecture supports the learning of such rules based on 
experience and on combination and generalization of pre-
programmed rules; and, future work will explore this direction.   

The full rule-base used to guide spontaneous behaviors and 
emotions in the current system version is too large to present 
here, but we will give a few evocative examples.  First, though, 
we must give a few comments on rule notation.  Firstly, the 
notation ==> in a rule indicates a PredictiveImplication 
relationship.  Rules are assumed to have truth value strengths 
drawn from a discrete set of values 
 
{0, VERY LOW, LOW, MIDDLE, HIGH, VERY HIGH, 1} 
 
In the following list, all rules should be assumed to have a truth 
value of HIGH unless something else is explicitly indicated  

Also, predicates (including emotions, personality values 
and others) are assumed to be scalable according to a scaling 
function called scale(), which takes two arguments: scale(x,c), 
where both x and c should live in [0,1].  The behavior of this is 
as follows: 
 
If c=1, then scale(x,c) = xr 
If c=0, then scale(x,c) = x 
If c=-1, then scale(x,c) = x1/r 
 
(As a default one may choose, say, r=5 for the scaling 
parameter.)  For fixed x, scale(x,c) increases as c increases.  The 
reason to use this function is because if x is trapped in [0,1], one 

can’t scale it by multiplying it by a constant.  So we need to 
scale x nonlinearly, in a way that making c bigger generally 
makes x bigger.  A simple first choice of scaling function is 
 
scale(x,c) = xc*r, for c>0 
scale(x,c) = x|c| / r, for c<0 
 
For simplicity of notation, scaling by c will be denoted ^^c .  For 
instance 
 
.5^^c = scale(.5,c) 
AggressivenessP^^.8. = scale(AggressivenessP,.8) 
 
Without scaling, it seems that rules with more factors on the lhs 
will generally be less often invoked because their lhs has the 
product of a larger number of terms, all less than 1.  So we have 
introduced a default scaling, so that in a rule with k terms, all 
terms are scaled by ^^(-k/r), for example. 

For clarity, in the following list of rules, we’ve used 
suffixes to depict certain types of entities: P for personality traits, 
E for emotions, C for contexts and S for schemata (the latter 
being the lingo for “executable procedures” within the NCE).  In 
the case of schemata an additional shorthanding is in place, e.g. 
barkS is used as a shorthand for (Execution bark) where bark is a 
SchemaNode.  Also, the notation TE<expression>($X) is 
shorthand for  
 
ThereExists $X 
 Evaluation <expression> $X 
 
i.e. an existential quantification relationship. 

Example rules from the rule-base are as follows: 
 

• angerToward($X) ==> angry 
• loveToward($X) ==> love 
• hateToward($X) ==> hate 
• fearToward($X) ==> fear 
• TEgratitudeToward($X) ==> gratitude 
• angerToward($X) ==> ~friend($X) <LOW> 
• TE(near($X) & novelty($X)) ==> novelty 
• TEloveToward($X) & sleepy ==> gotoS($X) 
• TE(loveToward($X) & near($X)) & sleepy ==> sleepS 
• gratitudeToward($X) ==> lick($X) 
• atHomeC & sleepyB ==> Ex sleepS <.7> 
• gotoS($X) ==> near($X) <.6> 
• gotoS($X) ==> near($X) <.6> 
• AggressivenessP & angryE & barkS => happyE 
• AggressivenessP & angryE & barkS ==> proudE 
• AggressivenessP & angerToward($X) ==> 

barkAtS($X) <VH> 
• AggressivenessP & angerToward($X) ==> 

barkAtS($X) <VH> 
• AggressivenessP & angerToward($X) ==> nipS($X) 

<MID> 
• AggressivenessP & near($X) & ~friend($X) ==> 

angerToward($X) 
• AggressivenessP & near($X) & enemy($X) ==> 

angerToward($X) <VH> 
• AggressivenessP & near_my_food($X) & ~friend($X) 

==> angryToward($X) <VL> 
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• AggressivenessP & near_my_food($X) ==> 
angryToward($X)  

• AggressivenessP & angerToward($X) & ~friend($X) 
==> hate($X) 

• AggressivenessP & OtherOrientationP & 
ownerNear($X) & enemy($X) ==> angerToward($X) 

• AggressivenessP & near($X) & enemy($X) & homeC 
==> angerToward($X) 

• AggressivenessP & ~happyE & ~angryE ==> boredE 
• AggressivenessP & jealousE ==> angryE 
• AggressivenessP & boredE ==> angryE <LOW> 

 
Spontaneous activity of a virtual animal, governed by the 

above equations, is determined based on the modeling of 
habitual activity as the carrying out of actions that the pet has 
previously carried out in similar contexts.  For each schema S, 
there is a certain number of implications pointing into (Ex S), 
and each of these implications leads to a certain value for the 
truth value of (Ex S).  These values may be merged together 
using (some version of) the revision rule. 

However, a complication arises here, which is the 
appearance of emotion values like happyE on the rhs of some 
implications, and on the lhs of some others.  This requires some 
simple backward chaining inference in order to evaluate some of 
the (Ex S).  

A similar approach applies to the generation of goal-driven 
activity based on rules such as the above.  As an example, 
suppose we have a goal G that involves a single emotion/mood 
E, such as excitement.  Then there are two steps: 
 

1. Make a list of schemata S whose execution is known 
to fairly directly affect E 

2. For these schemata, estimate the probability of 
achievement of G if S were activated in the current 
context 

 
For Step 1, we can look for 
 

• Schemata on the lhs of implications with E on the rhs 
• One more level: schemata on the lhs of implications 

with X on the rhs, so that X is on the lhs of some 
implication with E on the rhs 

7 CONCLUSIONS & FUTURE WORK 
We have described an approach to emotion and personality 

driven behavior determination for virtual animals.  The approach 
has a relatively simple initial incarnation, which has been 
implemented as described above, and also presents a broad scope 
of possibilities for future growth.  Most notably, since the 
behavior and emotion determination rules are expressed in the 
form of probabilistic-logic implications, it will be natural to 
augment the initial architecture via 

 
• introducing automated mining of rules based on a 

database of the system’s experience (the principle 
being that rules which the system has implicitly 
followed in the past, may be explicitly mined as 
probabilistic implications and then used as explicit 
behavior determination rules; this process has a 
deep foundation in cognitive systems theory and is 

related to the “cognitive equation” articulated in 
[13]). 

• utilizing probabilistic logic to derive new rules from 
existing ones, based on logic rules described in [9] 
such as deduction, induction, abduction, analogy 
and so forth. 

 
While these enhancements will lead to substantially richer 

behaviors and emotional dynamics, our preliminary 
experimentation suggests that the initial version is quite 
sufficient to give rise to a variety of interesting behaviors.  The 
real test, of course, will be when the animals are released in 
Second Life and other virtual worlds for interaction with end-
users.  
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